Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Xueli Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Aihui Wang
and
Xueli Shi

Abstract

Based on the gravimetric-technique-measured soil relative wetness and the observed soil characteristic parameters from 1992 to 2013 in China, this study derives a user-convenient monthly volumetric soil moisture (SM) dataset from 732 stations for five soil layers (10, 20, 50, 70, and 100 cm). The temporal–spatial variations in SM and its relationship with precipitation (Pr) in different subregions are then explored. The magnitude of SM is relatively large in south China and is low in northwest China, and it generally increases with soil depth in each region. The maximum SM appears in spring and/or autumn and the minimum in summer, and the SM seasonality does not vary as distinctly as that of Pr. For the top three soil layers (10-, 20-, and 50-cm levels), the linear trend analysis indicates an overall increasing SM tendency, and the mean trends (averaged across stations with trends passing a 95% significance level test) are 9.35 × 10−7, 7.37 × 10−3, and 2.45 × 10−3 cm3 cm−3 yr−1, respectively. SM memory depends on the soil depth and regions, and it has longer retention time in the deeper layers. Furthermore, the correlation between SM and antecedent Pr varies with soil depth and lag time. The antecedent Pr anomaly (1 or 2 months in advance) can be used to some extent as a surrogate SM anomaly in most regions except for in arid regions. This result is further demonstrated by the relationships between the SM anomaly and the standardized precipitation index. The current SM dataset can be used in various applications, such as validating satellite-retrieved products and model outputs.

Full access
Xueli Yin
,
Dongliang Yuan
,
Xiang Li
,
Zheng Wang
,
Yao Li
,
Corry Corvianawatie
,
Adhitya Kusuma Wardana
,
Dewi Surinati
,
Adi Purwandana
,
Mochamad Furqon Azis Ismail
,
Asep Sandra Budiman
,
Ahmad Bayhaqi
,
Praditya Avianto
,
Edi Kusmanto
,
Priyadi Dwi Santoso
,
Dirhamsyah
, and
Zainal Arifin

Abstract

The mean circulation and volume budgets in the upper 1200 m of the Maluku Sea are studied using multiyear current meter measurements of four moorings in the Maluku Channel and of one synchronous mooring in the Lifamatola Passage. The measurements show that the mean current in the depth range of 60–450 m is northward toward the Pacific Ocean with a mean transport of 2.07–2.60 Sv (1 Sv ≡ 106 m3 s−1). In the depth range of 450–1200 m, a mean western boundary current (WBC) flows southward through the western Maluku Sea and connects with the southward flow in the Lifamatola Passage. The mean currents in the central-eastern Maluku Channel are found to flow northward at this depth range, suggesting an anticlockwise western intensified gyre circulation in the middle layer of the Maluku Sea. Budget analyses suggest that the mean transport of the intermediate WBC is 1.83–2.25 Sv, which is balanced by three transports: 1) 0.62–0.93 Sv southward transport into the Seram–Banda Seas through the Lifamatola Passage, 2) 0.97–1.01 Sv returning to the western Pacific Ocean through the central-eastern Maluku Channel, and 3) a residual transport surplus, suggested to upwell to the upper layer joining the northward transport into the Pacific Ocean. The dynamics of the intermediate gyre circulation are explained by the potential vorticity (PV) integral constraint of a semienclosed basin.

Significance Statement

The Indonesian Throughflow plays an important role in the global ocean circulation and climate variations. Existing studies of the Indonesian Throughflow have focused on the upper thermocline currents. Here we identify, using mooring observations, an intermediate western boundary current with the core at 800–1000-m depth in the Maluku Sea, transporting intermediate waters from the Pacific into the Seram–Banda Seas through the Lifamatola Passage. Potential vorticity balance suggests an anticlockwise gyre circulation in the intermediate Maluku Sea, which is evidenced by the mooring and model data. Transport estimates suggest northward countercurrent in the upper Maluku Sea toward the Pacific, supplied by the Lifamatola Passage transport and upwelling from the intermediate layer in the Maluku Sea. Our results suggest the importance of the intermediate Indonesian Throughflow in global ocean circulation and overturn. More extensive investigations of the Indo-Pacific intermediate ocean circulation should be conducted to improve our understanding of global ocean overturn and heat and CO2 storages.

Restricted access

EC-Earth

A Seamless Earth-System Prediction Approach in Action

Wilco Hazeleger
,
Camiel Severijns
,
Tido Semmler
,
Simona Ştefănescu
,
Shuting Yang
,
Xueli Wang
,
Klaus Wyser
,
Emanuel Dutra
,
José M. Baldasano
,
Richard Bintanja
,
Philippe Bougeault
,
Rodrigo Caballero
,
Annica M. L. Ekman
,
Jens H. Christensen
,
Bart van den Hurk
,
Pedro Jimenez
,
Colin Jones
,
Per Kållberg
,
Torben Koenigk
,
Ray McGrath
,
Pedro Miranda
,
Twan van Noije
,
Tim Palmer
,
José A. Parodi
,
Torben Schmith
,
Frank Selten
,
Trude Storelvmo
,
Andreas Sterl
,
Honoré Tapamo
,
Martin Vancoppenolle
,
Pedro Viterbo
, and
Ulrika Willén
Full access