Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Xuhui Lee x
  • All content x
Clear All Modify Search
Xuhui Lee

Abstract

Wavelike oscillations are a common form of air motion in the forest canopy at night. This paper investigates the canopy wave phenomenon using a two-dimensional inviscid linear wave model taking into account the drag force exerted on the wave wind components by plant elements and the plant–air heat exchange induced by temperature wave oscillations. The model appears to have adequately reproduced the salient features of a wave event in a boreal aspen forest.

The wave dynamics are investigated as functions of parameters of the background states expressed in analytical form. It is shown that canopy waves are generated by wind shear near the treetops and share features of a Kelvin–Helmholtz disturbance. Because it is located close to the inflection point of the mean wind, the ground exerts a strong stabilizing effect on the wave motions, particularly in a sparse forest. The main role of the canopy drag in the wave dynamics is the creation of the inflection point; its damping effect on wave oscillations themselves is limited to disturbances of wavelengths shorter than that of the fastest growing waves. Wavelength, phase speed, and period of the fastest growing waves, those that are most likely to dominate observations, appear insensitive to static stability.

Full access
Xuhui Lee

Abstract

The main objectives of this observational study are to examine the stability dependence of velocity and air temperature spectra and to employ the spectral quantities to establish relations for eddy diffusivity over forests. The datasets chosen for the analysis were collected above the Browns River forest and the Camp Borden forest over a wide range of stability conditions.

Under neutral and unstable conditions the nondimensional dissipation rate of turbulent kinetic energy (TKE) over the forests is lower than that from its Monin-Obukhov similarity (MOS) function for the smooth-wall surface layer. The agreement is somewhat better under stable conditions but a large scatter is evident. When the frequency is made nondimensional by the height of the stand (h) and the longitudinal velocity at this height (uh, the Kaimal spectral model for neutral air describes the observations very well. The eddy diffusivity formulation K = c σ4 w/ε provides a promising alternative to the MOS approach, where σw is the standard deviation of the vertical velocity and ε TKE dissipation rate. Current datasets yield a constant of 0.43 for c for sensible heat in neutral and stable air, a value very close to that for the smooth-wall surface layer. It is postulated that c is a conservative parameter for sensible heat in the unstable air, its value probably falling between 0.41 and 0.54. In the absence of ε data, it is possible to estimate K from measurements of the local mean wind u and air stability. As a special case, it is shown that K = 0.27(uh/uhw under neutral stability. This relation is then used to establish a profile model for wind speed and scalar concentration in the roughness sublayer. The analysis points out that uh and h are important scaling parameters in attempts to formulate quantitative relations for turbulence over tall vegetation.

Full access
Xuhui Lee, Steve Sargent, Ronald Smith, and Bert Tanner
Full access
Xuhui Lee, Steve Sargent, Ronald Smith, and Bert Tanner

Abstract

In this paper a system for in situ measurement of H2 16O/H2 18O in air based on tunable diode laser (TDL) absorption spectroscopy is described. Laboratory tests showed that its 60-min precision (one standard deviation) was 0.21‰ at a water vapor volume mixing ratio of 2.67 mmol mol−1 (dewpoint temperature −10.8°C at sea level) and improved to 0.09 at 15.3 mmol mol−1 (dewpoint temperature 13.4°C). The TDL measurement of the vapor generated by a dewpoint generator differed from the equilibrium prediction by −0.11 ± 0.43‰ (mean ± one standard deviation). Its measurement of the ambient water vapor differed from the cold-trap/mass spectrometer method by −0.36 ± 1.43‰. The larger noise of the latter comparison was caused primarily by the difficulty in extracting vapor from air without altering its isotope content. In a 1-week test in Logan, Utah, in August 2003, the isotope ratio of water vapor in ambient air was positively correlated with the water vapor mixing ratio and also responded to wetting events (rain and irrigation) in an expected manner.

This system has been in continuous operation in New Haven, Connecticut, since December 2003. It is suggested that such uninterrupted measurement may open a new window on the hydrologic cycle, particularly processes involving phase changes of water, and can increase the power of the isotope method in ecological applications.

Full access
Zhilin Zhu, Xiaomin Sun, Renhua Zhang, Hongbo Su, Xinzai Tang, and Xuhui Lee

Abstract

The boundary layer transfer resistance is an important parameter in micrometeorology. The most common approach to determining it uses a wind function that is extremely sensitive to the specified roughness length and can suffer large uncertainties, especially for partially vegetated surfaces. In order to avoid using some sensitive parameters not easily determined, a simple apparatus was designed for direct measurement of the resistance. This note reports the preliminary results of a test using the apparatus in a sparse wheat field.

Full access
Bin Deng, Shoudong Liu, Wei Xiao, Wei Wang, Jiming Jin, and Xuhui Lee

Abstract

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and against flux observations. The goal of this paper is to evaluate the National Center for Atmospheric Research Community Land Model version 4–Lake, Ice, Snow and Sediment Simulator using the eddy covariance and water temperature data obtained at a subtropical freshwater lake, Lake Taihu, in China. Both observations and model simulations reveal that convective overturning was commonplace at night and timed when water switched from being statically stable to being unstable. By reducing the water thermal diffusivity to 2% of the value calculated with the Henderson–Sellers parameterization, the model was able to reproduce the observed diurnal variations in water surface temperature and in sensible and latent heat fluxes. The small diffusivity suggests that the drag force of the sediment layer in this large (2500 km2) and shallow (2-m depth) lake may be strong, preventing unresolved vertical motions and suppressing wind-induced turbulence. Model results show that a large fraction of the incoming solar radiation energy was stored in the water during the daytime, and the stored energy was diffused upward at night to sustain sensible and latent heat fluxes to the atmosphere. Such a lake–atmosphere energy exchange modulated the local climate at the daily scale in this shallow lake, which is not seen in deep lakes where dominant lake–atmosphere interactions often occur at the seasonal scale.

Full access
Cheng Liu, Evgeni Fedorovich, Jianping Huang, Xiao-Ming Hu, Yongwei Wang, and Xuhui Lee

Abstract

Entrainment is critical to the development of the atmospheric convective boundary layer (CBL), but little is known about how entrainment is impacted by the aerosol radiative effect. An aerosol radiation transfer model is used in conjunction with large-eddy simulation (LES) to quantify the impact of aerosol shortwave radiative heating on entrainment and thermodynamics of an idealized dry CBL under aerosol-loading conditions. An entrainment equation is derived within the framework of a zero-order model (ZOM) with the aerosol radiative heating effect included; the equation is then examined against the LES outputs for varying aerosol optical depths (AODs) and free-atmosphere stratification scenarios. The results show that the heat flux profiles become more nonlinear in shape as compared to the case of the clean (no aerosol pollution) CBL, with the degree of nonlinearity being highly dependent on the AOD of the layer for the given type of radiation-absorbing aerosols. As AOD increases, less solar radiation reaches the surface and thus the surface heat flux becomes smaller, and both actual (LES) and ZOM-derived entrainment flux ratios decrease. This trend is opposite to the clean CBL where the LES-predicted flux ratios show an increasing trend with diminishing surface heat flux, while the ZOM-calculated flux ratio remains constant. The modified dimensionless entrainment rate closely follows the −1 power law with a modified Richardson number. The study suggests that including the aerosol radiative effect may improve numerical air quality predictions for heavy-air-pollution events.

Full access
Andrew D. Richardson, Ellen G. Denny, Thomas G. Siccama, and Xuhui Lee

Abstract

Data from 24 airport weather stations along the north–south axis (35°–45°N) of the Appalachian Mountains are used to show a significant rising trend in cloud-ceiling height over the past three decades. The mean change in cloud-ceiling height was 4.14 ± 1.03 m yr−1 [mean ± 1 SE (standard error), p ≤ 0.001] across all stations. The trend was negative (−2.22 ± 0.67 m yr−1) for the six stations south of 37.5°N, but positive (6.26 ± 0.89 m yr−1) for the 18 stations north of this latitude. Mean ceiling height for broken cloud cover was higher and rising faster than mean ceiling height for overcast cloud cover. There were strong seasonal patterns that varied between the northernmost and southernmost stations; differences were most pronounced during the spring and summer months. Some of the potential ecological effects on high-elevation forests, where the transition from deciduous to coniferous forest is thought to be controlled by the height of the cloud base, are discussed.

Full access
Chang Cao, Yichen Yang, Yang Lu, Natalie Schultze, Pingyue Gu, Qi Zhou, Jiaping Xu, and Xuhui Lee

Abstract

Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Restricted access
Yongwei Wang, Yaqi Gao, Hairun Qin, Jianping Huang, Cheng Liu, Cheng Hu, Wei Wang, Shoudong Liu, and Xuhui Lee

Abstract

Lake Taihu is a shallow lake located in the Yangtze River delta region in eastern China. Lake breezes and their interactions with urban heat islands are of great importance to air quality and weather forecasting. In this study, surface observations at a dense network and Wind Profile Radar measurements were utilized to characterize the lake breezes at Lake Taihu and assess the impact of geophysical factors on the development and intensity of the lake breezes. The lake breezes were characterized by a low occurrence frequency of 12%–17% (defined as the percentage of days with lake breezes in a given month), weak speed (annual mean ranging from 1.5 to 3.3 m s−1), late onset [average onset around 1110 local standard time (LST), with a range of 0900–1300 LST], short duration (annual mean 3.5 h), and low circulation depth (average depth of 400 m from 1200 to 1400 LST). The lake breezes were greatly suppressed when the geostrophic winds were higher than 4.1 m s−1. The low heat capacity of shallow water (mean depth 2.0 m) led to small temperature differences between the land and the lake, which was the main factor responsible for the low occurrence frequency along Lake Taihu. All of the characteristic parameters showed distinct seasonal variations. Increased frequencies, earlier onset times, and longer durations on the northern lakeshore were indicative of the impact of the urban heat island on the lake breezes.

Full access