Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Xuyang Ge x
  • All content x
Clear All Modify Search
Xuyang Ge, Tim Li, and Melinda Peng

Abstract

A set of idealized experiments using the Weather Research and Forecasting model (WRF) were designed to investigate the impacts of a midlevel dry air layer, vertical shear, and their combined effects on tropical cyclone (TC) development. Compared with previous studies that focused on the relative radial position of dry air with no mean flow, it is found that the combined effect of dry air and environmental vertical shear can greatly affect TC development. Moreover, this study indicates the importance of dry air and vertical shear orientations in determining the impact. The background vertical shear causes the tilting of an initially vertically aligned vortex. The shear forces a secondary circulation (FSC) with ascent (descent) in the downshear (upshear) flank. Hence, convection tends to be favored on the downshear side. The FSC reinforced by the convection may overcome the shear-induced drifting and “restore” the vertical alignment. When dry air is located in the downshear-right quadrant of the initial vortex, the dry advection by cyclonic circulation brings the dry air to the downshear side and suppresses moist convection therein. Such a process disrupts the “restoring” mechanism associated with the FSC and thus inhibits TC development. The sensitivity experiments show that, for a fixed dry air condition, a marked difference occurs in TC development between an easterly and a westerly shear background.

Full access
Xuyang Ge, Tim Li, and Melinda S. Peng

Abstract

The genesis of Typhoon Prapiroon (2000), in the western North Pacific, is simulated to understand the role of Rossby wave energy dispersion of a preexisting tropical cyclone (TC) in the subsequent genesis event. Two experiments are conducted. In the control experiment (CTL), the authors retain both the previous typhoon, Typhoon Bilis, and its wave train in the initial condition. In the sensitivity experiment (EXP), the circulation of Typhoon Bilis was removed based on a spatial filtering technique of Kurihara et al., while the wave train in the wake is kept. The comparison between these two numerical simulations demonstrates that the preexisting TC impacts the subsequent TC genesis through both a direct and an indirect process. The direct process is through the conventional barotropic Rossby wave energy dispersion, which enhances the low-level wave train, the boundary layer convergence, and the convection–circulation feedback. The indirect process is through the upper-level outflow jet. The asymmetric outflow jet induces a secondary circulation with a strong divergence tendency to the left-exit side of the outflow jet. The upper-level divergence boosts large-scale ascending motion and promotes favorable environmental conditions for a TC-scale vortex development. In addition, the outflow jet induces a well-organized cyclonic eddy angular momentum flux, which acts as a momentum forcing that enhances the upper-level outflow and low-level inflow and favors the growth of the new TC.

Full access
Xuyang Ge, Ziyu Yan, Melinda Peng, Mingyu Bi, and Tim Li

Abstract

The impact of different vertical structures of a nearby monsoon gyre (MG) on a tropical cyclone (TC) track is investigated using idealized numerical simulations. In the experiment with a relatively deeper MG, the TC experiences a sharp northward turn at a critical point when its zonal westward-moving speed slows down to zero. At the same time, the total vorticity tendency for the TC wavenumber-1 component nearly vanishes as the vorticity advection by the MG cancels the vorticity advection by the TC. At this point, the TC motion is dominated by the beta effect, as in a no-mean-flow environment, and takes a sharp northward turn. In contrast, the TC does not exhibit a sharp northward turn with a shallower MG nearby. In the case with a deeper MG, a greater relative vorticity gradient of the MG promotes a quicker attraction between the TC and MG through the vorticity segregation process. In addition, a larger outer size of the TC also favors a faster westward propagation from its initial position, thus having more potential to collocate with the MG. Once the coalescence is in place, the Rossby wave energy dispersion associated with the TC and MG together is enhanced and rapidly strengthens the southwesterly flow on the eastern flank of both systems. The steering flow from both the beta gyre and the Rossby wave dispersion leads the TC to take a sharp northward track when the total vorticity tendency is at its minimum. This study indicates the importance of good representations of the TC structure and its nearby environmental flows in order to accurately predict TC motions.

Full access
Shengjun Zhang, Tim Li, Xuyang Ge, Melinda Peng, and Ning Pan

Abstract

A combined tropical cyclone dynamic initialization–three-dimensional variational data assimilation scheme (TCDI–3DVAR) is proposed. The specific procedure for the new initialization scheme is described as follows. First, a first-guess vortex field derived from a global analysis will be spun up in a full-physics mesoscale regional model in a quiescent environment. During the spinup period, the weak vortex is forced toward the observed central minimum sea level pressure (MSLP). The so-generated balanced TC vortex with realistic MSLP and a warm core is then merged into the environmental field and used in the subsequent 3DVAR data assimilation. The observation system simulation experiments (OSSEs) demonstrate that this new TC initialization scheme leads to much improved initial MSLP, warm core, and asymmetric temperature patterns compared to those from the conventional 3DVAR scheme. Forecasts of TC intensity with the new initialization scheme are made, and the results show that the new scheme is able to predict the “observed” TC intensity change, compared to runs with the conventional 3DVAR scheme or the TCDI-only scheme. Sensitivity experiments further show that the intensity forecasts with knowledge of the initial MSLP and wind fields appear more skillful than do the cases where the initial MSLP, temperature, and humidity fields are known. The numerical experiments above demonstrate the potential usefulness of the proposed new initialization scheme in operational applications. A preliminary test of this scheme with a navy operational model shows encouraging results.

Full access
Xuyang Ge, Wanqiu Wang, Arun Kumar, and Ying Zhang

Abstract

In this paper, the influence of high vertical resolution near the surface in an oceanic general circulation model in simulating the observed sea surface temperature (SST) variability is investigated. In situ observations of vertical temperature profiles are first used to quantify temperature variability with depth near the ocean surface. The analysis shows that there is a sharp vertical temperature gradient within the top 10 m of the ocean. Both diurnal and intraseasonal variabilities of the ocean temperatures are largest near the surface and decrease with the ocean depth. Numerical experiments with an oceanic general circulation model are next carried out with 1- and 10-m vertical resolutions for the upper ocean to study the dependence of the simulated SST and vertical temperature structure on the vertical resolution. It is found that the simulated diurnal and intraseasonal variabilities, as well as the associated vertical temperature gradient near the surface, are strongly influenced by the oceanic vertical resolution, with the 1-m vertical resolution producing a stronger vertical temperature gradient and temporal variability than the 10-m vertical resolution. These results suggest that a realistic representation of SST variability with a high vertical resolution in the upper ocean is required for a coupled atmosphere–ocean model to correctly simulate the observed tropical intraseasonal oscillations, including the Madden–Julian oscillation and the boreal summer monsoon intraseasonal oscillation, which are strongly linked with the underlying SST.

Full access
Jia Liang, Liguang Wu, Xuyang Ge, and Chun-Chieh Wu

Abstract

In the second part of this study, numerical experiments are conducted to investigate the influences of multi-time-scale monsoonal flows on the track change of Typhoon Morakot (2009). While the control simulation captures the slowing and northward deflections in the vicinity of Taiwan Island, the highly asymmetric rainfall structure, and the associated rainfall pattern, sensitivity experiments suggest that the westward movement prior to the landfall on Taiwan and the subsequent northward shifts in the vicinity of Taiwan were closely associated with the interaction between Morakot and multi-time-scale monsoonal flows.

Prior to the landfall on Taiwan, Morakot moved westward directly toward Taiwan because of a synoptic wave train–like pattern, which consisted of Goni over mainland China, Morakot, and a cyclone over the western North Pacific with an anticyclone to the west of Morakot. Numerical simulation suggests that strong northerly winds between Morakot and the anticyclone reduced the northward steering component associated with the low-frequency flow prior to the landfall. Numerical experiments confirm that the northward track shifts that occurred in the vicinity of Taiwan Island were a result of the coalescences of Morakot with a quasi-biweekly oscillation (QBW)-scale gyre prior to the landfall on Taiwan and a Madden–Julian oscillation (MJO)-scale gyre in the Taiwan Strait. The simulation of Morakot and the associated sensitivity experiments agree with the previous barotropic study that the interaction between tropical cyclones and low-frequency monsoon gyres can cause sudden changes in tropical cyclone tracks.

Full access
Xiaqiong Zhou, Bin Wang, Xuyang Ge, and Tim Li

Abstract

The primary goal of this study is to explore the factors that might influence the intensity change of tropical cyclones (TCs) associated with secondary eyewall replacement. Concentric eyewall structures in TCs with and without large intensity weakening are compared using the Tropical Rainfall Measuring Mission (TRMM) 2A12 and 2A25 data. It is found that the secondary eyewalls with a stratiform-type heating profile show a marked weakening, while those TCs with a convective-type heating weaken insignificantly or even intensify. This observed feature is supported by a set of sensitivity numerical experiments performed with the Weather Research and Forecasting model. With more active convection, the latent heat released in the outer eyewall and moat region can better sustain storm intensity. The prevailing stratiform precipitation results in low equivalent potential temperature air in the moat and reduces the entropy of the boundary layer inflow to the inner eyewall through persistent downdrafts, leading to a large intensity fluctuation. Comparison of observations and numerical model results reveals that the model tends to overproduce convective precipitation in the outer eyewall and the moat. It is possible that the model underestimates the storm intensity changes associated with eyewall replacement events.

Full access
Xuyang Ge, Tim Li, Yuqing Wang, and Melinda S. Peng

Abstract

The three-dimensional (3D) Rossby wave energy dispersion of a tropical cyclone (TC) is studied using a baroclinic primitive equation model. The model is initialized with a symmetric vortex on a beta plane in an environment at rest. The vortex intensifies while becoming asymmetric and moving northwestward because of the beta effect. A synoptic-scale wave train forms in its wake a few days later. The energy-dispersion-induced Rossby wave train has a noticeable baroclinic structure with alternating cyclonic–anticyclonic–cyclonic (anticyclonic–cyclonic–anticyclonic) circulations in the lower (upper) troposphere.

A key feature associated with the 3D wave train development is a downward propagation of the relative vorticity and kinetic energy. Because of the vertical differential inertial stability, the upper-level wave train develops faster than the lower-level counterpart. The upper anticyclonic circulation rapidly induces an intense asymmetric outflow jet in the southeast quadrant, and then further influences the lower-level Rossby wave train. On one hand, the outflow jet exerts an indirect effect on the lower-level wave train strength through changing TC intensity and structure. On the other hand, it triggers downward energy propagation that further enhances the lower-level Rossby wave train. A sudden removal of the diabatic heating may initially accelerate the energy dispersion through the increase of the radius of maximum wind and the reduction of the lower-level inflow. The latter may modulate the group velocity of the Rossby wave train through the Doppler shift effect. The 3D numerical results illustrate more complicated Rossby wave energy dispersion characteristics than 2D barotropic dynamics.

Full access
Eric A. Hendricks, Melinda S. Peng, Xuyang Ge, and Tim Li

Abstract

A dynamic initialization scheme for tropical cyclone structure and intensity in numerical prediction systems is described and tested. The procedure involves the removal of the analyzed vortex and, then, insertion of a new vortex that is dynamically initialized to the observed surface pressure into the numerical model initial conditions. This new vortex has the potential to be more balanced, and to have a more realistic boundary layer structure than by adding synthetic data in the data assimilation procedure to initialize the tropical cyclone in a model. The dynamic initialization scheme was tested on multiple tropical cyclones during 2008 and 2009 in the North Atlantic and western North Pacific Ocean basins using the Naval Research Laboratory’s tropical cyclone version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS-TC). The use of this initialization procedure yielded significant improvements in intensity forecasts, with no degradation in track performance. Mean absolute errors in the maximum sustained surface wind were reduced by approximately 5 kt for all lead times up to 72 h.

Full access
Tim Li, Xuyang Ge, Bin Wang, and Yongti Zhu

Abstract

The cyclogenesis events associated with the tropical cyclone (TC) energy dispersion are simulated in a 3D model. A new TC with realistic dynamic and thermodynamic structures forms in the wake of a preexisting TC when a large-scale monsoon gyre or a monsoon shear line flow is present. Maximum vorticity generation appears in the planetary boundary layer (PBL) and the vorticity growth exhibits an oscillatory development. This oscillatory growth is also seen in the observed rainfall and cloud-top temperature fields. The diagnosis of the model output shows that the oscillatory development is attributed to the discharge and recharge of the PBL moisture and its interaction with convection and circulation. The moisture–convection feedback regulates the TC development through controlling the atmospheric stratification, raindrop-induced evaporative cooling and downdraft, PBL divergence, and vorticity generation. On one hand, ascending motion associated with deep convection transports moisture upward and leads to the discharge of PBL moisture and a convectively stable stratification. On the other hand, the convection-induced raindrops evaporate, leading to midlevel cooling and downdraft. The downdraft further leads to dryness and a reduction of equivalent potential temperature. This reduction along with the recharge of PBL moisture due to surface evaporation leads to reestablishment of a convectively unstable stratification and thus new convection.

Sensitivity experiments with both a single mesh (with a 15-km resolution) and a nested mesh (with a 5-km resolution in the inner mesh) indicate that TC energy dispersion alone in a resting environment does not lead to cyclogenesis, suggesting the important role of the wave train–mean flow interaction. A proper initial condition for background wind and moisture fields is crucial for maintaining a continuous vorticity growth through the multioscillatory phases.

Full access