Search Results

You are looking at 1 - 10 of 26 items for

  • Author or Editor: Y-C. Zhang x
  • All content x
Clear All Modify Search
E. C. Hunke and Y. Zhang

Abstract

An elastic-viscous-plastic (EVP) model for sea ice dynamics has recently been proposed as a computationally efficient alternative to the viscous-plastic (VP) model widely in use. The EVP model features a fully explicit discretization that improves the model’s efficiency, particularly on high-resolution grids, and adapts easily to parallel computation. Comparison of two high-resolution Arctic sea ice simulations, identical except for the ice dynamics, indicates that the EVP model reproduces the VP model behavior on timescales relevant to climate studies. The ice concentration and thickness distributions over a 1-yr integration period are remarkably similar in the two models, although the EVP model responds more rapidly and accurately to strong synoptic weather systems than does the VP model, compared to drifting Arctic buoys. A close look at rates of strain shows that elastic waves in the EVP model do not significantly alter the ice behavior in highly compact areas, where the waves most benefit numerical efficiency. Internal stress of the ice is also similar in the two models; both deviate from viscoplasticity in regions of nearly rigid ice and in regions of low concentration undergoing approximately free drift motion.

Full access
Y-C. Zhang and W. B. Rossow

Abstract

The annual-mean meridional energy transport in the atmosphere–ocean system (total transport) is estimated using 4-yr mean net radiative fluxes at the top of the atmosphere (TOA) calculated from the International Satellite Cloud Climatology Project cloud datasets. In addition, the net atmospheric and surface radiative fluxes are calculated. When supplemented by a climatology of the surface latent and sensible heat fluxes, these radiative fluxes are used to derive the separate atmospheric and oceanic energy transports using a surface and planetary energy-balance method. Most previous results are based on direct calculations of the atmospheric energy transport from in situ measurements of horizontal wind velocity, temperature, and humidity in the atmosphere and on inference of oceanic heat transports as the difference between the atmospheric transports and the total energy transport (the planetary energy-balance method). Total, atmospheric, and oceanic energy transports from this study are in good agreement with more recent results (within mutual uncertainties). A detailed assessment is made of the uncertainties in the atmospheric and ocean energy transports that arise from uncertainties in the TOA and surface energy fluxes: the largest uncertainties are associated with the surface radiative and latent heat fluxes. Since the errors in the present method are from different sources and have different geographic distributions, the results of this study complement previous estimates of the atmospheric and oceanic energy transports. Assessment of error sources also suggests that improvement of this type of result is more likely in the near future than for the other methods. Because the radiative fluxes are calculated from physical quantities, the authors can characterize the mean effects of clouds on the atmospheric and oceanic energy transports: 1) cloud effects on the TOA radiation budget reduce hemispheric differences introduced by hemispheric differences of surface properties, 2) the cloud effects on the atmospheric and surface radiation budgets induce hemispheric differences in the heating/cooling of the atmosphere and ocean that require cross-equatorial transports in opposite directions by the atmosphere and ocean, and 3) all other factors held constant, clouds tend to reduce oceanic energy transports and increase atmospheric energy transports.

Full access
J. Zhang, Y. Wu, C. L. Liu, Z. B. Shen, and Y. Zhang

Abstract

Aerosol samples were collected from the northwest China desert region (i.e., Minqin), a coastal suburb area (i.e., Qingdao), and an island from the Yellow Sea (i.e., Qianliyan), respectively, in spring and summer of 1995 and 1996. Samples were analyzed for major components (Al, Ca, K, Mg, and Na), carbon (RAC), and sulphur (RAS). The results show that concentration of aerosols change considerably in time and space. The application of a three end-member-mixing model indicates that dust-dominated materials contribute up to 80%–90% of total aerosols when the cold fronts pass through over the Yellow Sea. The crust-dominated aerosols carried by cold front systems may well reduce the percentage concentrations of pollutant and sea salt over the Yellow Sea. The sea salt and regional aerosols become dominant fractions in atmosphere in summer when the dust storms expire in desert regions and the southeast monsoon starts in the subtropical Pacific Ocean.

Full access
Q.-S. Ge, J.-Y. Zheng, Z.-X. Hao, P.-Y. Zhang, and W.-C. Wang

Chinese historical documents that contain descriptions of weather conditions can be used for studying climate of the past hundreds or even thousands of years. In this study, the progress of reconstructing a 273-station quantitative precipitation dataset for 1736–1911—a period when records of the depth of rain infiltration (into the ground) and snow depth (above the surface) were kept in the Yu–Xue–Fen–Cun (which is part of memos routinely sent to the emperors during the Qing Dynasty) is reported. To facilitate the rainfall reconstruction, a field program of 29 sites covering different climate regimes and soil characteristics was designed for the purpose of establishing the transfer function between the rain infiltration depth and rainfall amount, while the relation between the snow depth and snowfall is obtained using instrumental measurements of recent decades. The results of the first site at Shijiazhuang (near Beijing) are reported here. The reconstruction shows that the summer and winter precipitation during 1736–1911 were generally greater than their respective 1961–90 means. Two years with extreme summer precipitation are identified—112 mm in 1792 and 1167 mm in 1801; the latter is larger than the 998 mm in 1996, which has been the most severe one of recent decades. The long-term high-resolution quantitative data can be used to study climate variability as well as to evaluate historical climate model simulations.

Full access
X. Y. Zhang, Y. Q. Wang, W. L. Lin, Y. M. Zhang, X. C. Zhang, S. Gong, P. Zhao, Y. Q. Yang, J. Z. Wang, Q. Hou, X. L. Zhang, H. Z. Che, J. P. Guo, and Y. Li

Before and during the 2008 Beijing Olympics from June to September, ground-based and satellite monitoring were carried out over Beijing and its vicinity (BIV) in a campaign to quantify the outcomes of various emission control measures. These include hourly surface PM10 and PM2.5 and their fraction of black carbon (BC), organics, nitrate, sulfate, ammonium, and daily aerosol optical depth (AOD), together with hourly reactive gases, surface ozone, and daily columnar NO2 from satellite. The analyses, excluding the estimates from weather contributions, demonstrate that after the control measures, including banning ~300,000 “yellow-tag” vehicles from roads, the even–odd turn of motor vehicles on the roads, and emission reduction aiming at coal combustion, were implemented, air quality in Beijing improved substantially. The levels of NO, NO2, NOx, CO, SO2, BC, organics, and nitrate dropped by about 30%–60% and the ozone moderately increased by ~40% while the sulfate and ammonium exhibited different patterns during various control stages. Weather conditions have a great impact on the summertime secondary aerosol (~80% of total PM) and O3 formations over BIV. During the Olympic Game period, various atmospheric components decreased dramatically at Beijing compared to the same period in the previous years. This decrease was related not only to the implementation of rigorous control measures, but also to the favorable weather processes. The subtropical high was located to the south so that Beijing's weather was dominated by the interaction between a frequently eastward shifting trough in the westerlies and a cold continental high with clear to cloudy days or showery weather.

Full access
A. Kumar, M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang

Abstract

For long-range predictions (e.g., seasonal), it is a common practice for retrospective forecasts (also referred to as the hindcasts) to accompany real-time predictions. The necessity for the hindcasts stems from the fact that real-time predictions need to be calibrated in an attempt to remove the influence of model biases on the predicted anomalies. A fundamental assumption behind forecast calibration is the long-term stationarity of forecast bias that is derived based on hindcasts.

Hindcasts require specification of initial conditions for various components of the prediction system (e.g., ocean, atmosphere) that are generally taken from a long reanalysis. Trends and discontinuities in the reanalysis that are either real or spurious can arise due to several reasons, for example, the changing observing system. If changes in initial conditions were to persist during the forecast, there is a potential for forecast bias to depend over the period it is computed, making calibration even more of a challenging task. In this study such a case is discussed for the recently implemented seasonal prediction system at the National Centers for Environmental Prediction (NCEP), the Climate Forecast System version 2 (CFS.v2).

Based on the analysis of the CFS.v2 for 1981–2009, it is demonstrated that the characteristics of the forecast bias for sea surface temperature (SST) in the equatorial Pacific had a dramatic change around 1999. Furthermore, change in the SST forecast bias, and its relationship to changes in the ocean reanalysis from which the ocean initial conditions for hindcasts are taken is described. Implications for seasonal and other long-range predictions are discussed.

Full access
J. L. Zhang, Y. P. Li, G. H. Huang, C. X. Wang, and G. H. Cheng

Abstract

In this study, a Bayesian framework is proposed for investigating uncertainties in input data (i.e., temperature and precipitation) and parameters in a distributed hydrological model as well as their effects on the runoff response in the Kaidu watershed (a snowmelt–precipitation-driven watershed). In the Bayesian framework, the Soil and Water Assessment Tool (SWAT) is used for providing the basic hydrologic protocols. The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is employed for the inference of uncertainties in input data and model parameters with global and local adaptive strategies. The advanced Bayesian framework can help facilitate the exploration of variation of model parameters due to input data errors, as well as propagation from uncertainties in data and parameters to model outputs in both snow-melting and nonmelting periods. A series of calibration cases corresponding to data errors under different periods are examined. Results show that 1) input data errors can affect the distributions of model parameters as well as parameters’ correlation, implying that data errors could influence the related hydrologic processes as well as their relations; 2) considering input data errors could improve the hydrologic simulation ability for peak streamflows; 3) considering errors of temperature and precipitation data as well as uncertainties of model parameters can provide the best modeling simulation performance in the snow-melting period; and 4) accounting for uncertainties in precipitation data and model parameters can provide the best modeling performance during the nonmelting period. The findings will help enhance hydrological model’s capability for simulating/predicting water resources during different seasons for snowmelt–precipitation-driven watersheds.

Full access
S. Chen, P. E. Kirstetter, Y. Hong, J. J. Gourley, Y. D. Tian, Y. C. Qi, Q. Cao, J. Zhang, K. Howard, J. J. Hu, and X. W. Xue

Abstract

In this paper, the authors estimate the uncertainty of the rainfall products from NASA and Japan Aerospace Exploration Agency's (JAXA) Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) so that they may be used in a quantitative manner for applications like hydrologic modeling or merging with other rainfall products. The spatial error structure of TRMM PR surface rain rates and types was systematically studied by comparing them with NOAA/National Severe Storms Laboratory's (NSSL) next generation, high-resolution (1 km/5 min) National Mosaic and Multi-Sensor Quantitative Precipitation Estimation (QPE; NMQ/Q2) over the TRMM-covered continental United States (CONUS). Data pairs are first matched at the PR footprint scale (5 km/instantaneous) and then grouped into 0.25° grid cells to yield spatially distributed error maps and statistics using data from December 2009 through November 2010. Careful quality control steps (including bias correction with rain gauges and quality filtering) are applied to the ground radar measurements prior to considering them as reference data. The results show that PR captures well the spatial pattern of total rainfall amounts with a high correlation coefficient (CC; 0.91) with Q2, but this decreases to 0.56 for instantaneous rain rates. In terms of precipitation types, Q2 and PR convective echoes are spatially correlated with a CC of 0.63. Despite this correlation, PR's total annual precipitation from convection is 48.82% less than that by Q2, which points to potential issues in the PR algorithm's attenuation correction, nonuniform beam filling, and/or reflectivity-to-rainfall relation. Finally, the spatial analysis identifies regime-dependent errors, in particular in the mountainous west. It is likely that the surface reference technique is triggered over complex terrain, resulting in high-amplitude biases.

Restricted access
Xin-Min Zeng, B. Wang, Y. Zhang, Y. Zheng, N. Wang, M. Wang, X. Yi, C. Chen, Z. Zhou, and H. Liu

Abstract

To quantify and explain effects of different land surface schemes (LSSs) on simulated geopotential height (GPH) fields, we performed simulations over China for the summer of 2003 using 12-member ensembles with the Weather Research and Forecasting (WRF) Model, version 3. The results show that while the model can generally simulate the seasonal and monthly mean GPH patterns, the effects of the LSS choice on simulated GPH fields are substantial, with the LSS-induced differences exceeding 10 gpm over a large area (especially the northwest) of China, which is very large compared with climate anomalies and forecast errors. In terms of the assessment measures for the four LSS ensembles [namely, the five-layer thermal diffusion scheme (SLAB), the Noah LSS (NOAH), the Rapid Update Cycle LSS (RUC), and the Pleim–Xiu LSS (PLEX)] in the WRF, the PLEX ensemble is the best, followed by the NOAH, RUC, and SLAB ensembles. The sensitivity of the simulated 850-hPa GPH is more significant than that of the 500-hPa GPH, with the 500-hPa GPH difference fields generally characterized by two large areas with opposite signs due to the smoothly varying nature of GPHs. LSS-induced GPH sensitivity is found to be higher than the GPH sensitivity induced by atmospheric boundary layer schemes. Moreover, theoretical analyses show that the LSS-induced GPH sensitivity is mainly caused by changes in surface fluxes (in particular, sensible heat flux), which further modify atmospheric temperature and pressure fields. The temperature and pressure fields generally have opposite contributions to changes in the GPH. This study emphasizes the importance of choosing and improving LSSs for simulating seasonal and monthly GPHs using regional climate models.

Full access
S. L. Gong, X. Y. Zhang, T. L. Zhao, X. B. Zhang, L. A. Barrie, I. G. McKendry, and C. S. Zhao

Abstract

A 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960–2003 was simulated with the Northern Aerosol Regional Climate Model (NARCM). Interannual variability in these Asian dust aerosol properties simulated by the model and its climate connections are analyzed with major climatic indices and records in ground observations. For dust production from most of the source regions, the strongest correlations were with the surface wind speed in the source region and the area and intensity indices of the Asian polar vortex (AIAPV and IIAPV, respectively). Dust emission was negatively correlated with precipitation and surface temperatures in spring. The strength of the East Asian monsoon was not found to be directly related to dust production but rather with the transport of dust from the Asian subcontinent. The interannual variability of dust loading and deposition showed similar relations with various climate indices. The correlation of Asian dust loading and deposition with the western Pacific (WP) pattern and Atmospheric Circulation Index (ACI) exhibited contrasting meridional and zonal distributions. AIAPV and IIAPV were strongly correlated with the midlatitude zonal distribution of dust loading and deposition over the Asian subcontinent and the North Pacific. The Pacific–North American (PNA) pattern and Southern Oscillation index (SOI) displayed an opposite correlation pattern of dust loading and deposition in the eastern Pacific, while SOI correlated significantly with dust loading over eastern China and northeast Asia. The Pacific decadal oscillation (PDO) was linked to variations of dust aerosol and deposition not only in the area of the eastern North Pacific and North America but also in the Asian dust source regions. The anomalies of transport flux and its divergence as well as dust column loading were also identified for eight typical El Niño and eight La Niña years. A shift of the trans-Pacific transport path to the north was found for El Niño years, which resulted in less dust storms and dust loading in China. In El Niño years the deserts in Mongolia and western north China closer to the polar cold air regions contributed more dust aerosol in the troposphere, while in La Niña years the deserts in central and eastern north China far from polar cold regions provided more dust aerosol in the troposphere. On the basis of the variability of Asian dust aerosol budgets, the ratio of inflow to North America to the outflow from Asia was found to be correlated negatively with the PNA index and positively with the WP index.

Full access