Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Y-J. Han x
- Refine by Access: All Content x
Abstract
The monthly wind stress over the global ocean has been calculated using updated climatological monthly mean wind data. The effect of the variablility of the wind has been incorporated by using the wind speed frequency estimated from the observed mean and variance in a Gaussian distribution model. The spatial and temporal data gaps in the high-latitude oceans have been filled with surface winds estimated from the monthly mean geostrophic winds.
The calculated stress data have revealed a number of interesting features that were not well resolved in earlier studies. A rapid transition from a winter to summer stress pattern in the north Indian Ocean is especially notable, and large-scale gyral patterns in the Antarctic Ocean and their seasonal variations are now well-defined. The monthly wind-stress curl calculated from the present stress data is in good agreement with earlier calculations, although the present curl field reveals a more detailed structure, especially in high latitudes and in the tropics.
These data should prove useful in global ocean general circulation models, as well as in other theoretical studies of ocean transports. They should also be useful in atmospheric general circulation studies, in view of their crucial importance to the atmospheric angular momentum balance.
Abstract
The monthly wind stress over the global ocean has been calculated using updated climatological monthly mean wind data. The effect of the variablility of the wind has been incorporated by using the wind speed frequency estimated from the observed mean and variance in a Gaussian distribution model. The spatial and temporal data gaps in the high-latitude oceans have been filled with surface winds estimated from the monthly mean geostrophic winds.
The calculated stress data have revealed a number of interesting features that were not well resolved in earlier studies. A rapid transition from a winter to summer stress pattern in the north Indian Ocean is especially notable, and large-scale gyral patterns in the Antarctic Ocean and their seasonal variations are now well-defined. The monthly wind-stress curl calculated from the present stress data is in good agreement with earlier calculations, although the present curl field reveals a more detailed structure, especially in high latitudes and in the tropics.
These data should prove useful in global ocean general circulation models, as well as in other theoretical studies of ocean transports. They should also be useful in atmospheric general circulation studies, in view of their crucial importance to the atmospheric angular momentum balance.
Abstract
Numerical integrations using a potential enstrophy conserving scheme are presented for the flow within a mixed layer over hilly terrain using the hydrostatic shallow-water equations with a quadratic drag law. The mesoscale area treated is 150 km on a side; cyclic lateral boundary conditions are used. It is found that for the idealized conditions treated (no surface heating, no entrainment and no pressure adjustments aloft), the topography quickly induces a steady state flow pattern by means of surface friction. Unsteadiness does not occur unless a surface-friction Reynolds number, R = h̄/(CDL), exceeds ∼100, where h̄h is the mean mixed-layer thickness, CD is the surface drag coefficient and L is a representative horizontal terrain length scale. Effects of varying the Rossby number, Froude number and terrain-height parameter are examined.
Abstract
Numerical integrations using a potential enstrophy conserving scheme are presented for the flow within a mixed layer over hilly terrain using the hydrostatic shallow-water equations with a quadratic drag law. The mesoscale area treated is 150 km on a side; cyclic lateral boundary conditions are used. It is found that for the idealized conditions treated (no surface heating, no entrainment and no pressure adjustments aloft), the topography quickly induces a steady state flow pattern by means of surface friction. Unsteadiness does not occur unless a surface-friction Reynolds number, R = h̄/(CDL), exceeds ∼100, where h̄h is the mean mixed-layer thickness, CD is the surface drag coefficient and L is a representative horizontal terrain length scale. Effects of varying the Rossby number, Froude number and terrain-height parameter are examined.
Abstract
A four-layer three-dimensional model whose lowest layer is a time and space-dependent, well-mixed boundary layer is employed over artificial, irregular terrain on the mesoscale during a daytime heating cycle. Only if the surface heating and mixed-layer entrainment am suppressed does the Row field become steady as found previously using a shallow-water model. Unsteadiness is due both to diurnal effects, especially the relaxation of the frictional force as the mixed layer deepens irregularly, and to the presence of horizontal vacations in potential temperature. The latter can develop with time due to the negative feedback between mixed-layer depth and warming rate; after the early morning hours, however, this feedback causes a damping of the temperature anomalies to much smaller values by late afternoon.
Cool-air anomalies in the mixed layer are found to develop lesser mixed-layer depths than warm anomalies, yet to be accompanied by greater “reduced” surface pressures. As a result, a thermal-anomaly form drag occurs of very significant amplitude, since the cool air pools spend most of the day moving upslope, on the average, and the warm air pockets downslope. The thermal-anomaly form-drag coefficients are typically of greater magnitude than the shallow-water form-drag coefficients associated with a mixed layer of uniform potential temperature capped by a temperature jump. However, the former can on occasion become negative. Parameterizations for both types of form drag are offered as a function of terrain heights and slopes, mixed-layer wind speed and inversion strength, and horizontal temperature variability.
Abstract
A four-layer three-dimensional model whose lowest layer is a time and space-dependent, well-mixed boundary layer is employed over artificial, irregular terrain on the mesoscale during a daytime heating cycle. Only if the surface heating and mixed-layer entrainment am suppressed does the Row field become steady as found previously using a shallow-water model. Unsteadiness is due both to diurnal effects, especially the relaxation of the frictional force as the mixed layer deepens irregularly, and to the presence of horizontal vacations in potential temperature. The latter can develop with time due to the negative feedback between mixed-layer depth and warming rate; after the early morning hours, however, this feedback causes a damping of the temperature anomalies to much smaller values by late afternoon.
Cool-air anomalies in the mixed layer are found to develop lesser mixed-layer depths than warm anomalies, yet to be accompanied by greater “reduced” surface pressures. As a result, a thermal-anomaly form drag occurs of very significant amplitude, since the cool air pools spend most of the day moving upslope, on the average, and the warm air pockets downslope. The thermal-anomaly form-drag coefficients are typically of greater magnitude than the shallow-water form-drag coefficients associated with a mixed layer of uniform potential temperature capped by a temperature jump. However, the former can on occasion become negative. Parameterizations for both types of form drag are offered as a function of terrain heights and slopes, mixed-layer wind speed and inversion strength, and horizontal temperature variability.
Abstract
Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can he determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.
Abstract
Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can he determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.
Abstract
The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixed-layer, mixed-phase cloud with an average temperature of approximately −20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using surface-based remote sensors, utilize the adiabatic assumption for the liquid component, and are aided by and validated with aircraft measurements from 4 and 7 May. The cloud radar ice microphysical retrievals, originally developed for all-ice clouds, compare well with aircraft measurements despite the presence of much greater liquid water contents than ice water contents. The retrieved time-mean liquid cloud optical depth of 10.1 ± 7.8 far surpasses the mean ice cloud optical depth of 0.2, so that the liquid phase is primarily responsible for the cloud’s radiative (flux) impact. The ice phase, in turn, regulates the overall cloud optical depth through two mechanisms: sedimentation from a thin upper ice cloud, and a local ice production mechanism with a time scale of a few hours, thought to reflect a preferred freezing of the larger liquid drops. The liquid water paths replenish within half a day or less after their uptake by ice, attesting to strong water vapor fluxes. Deeper boundary layer depths and higher cloud optical depths coincide with large-scale rising motion at 850 hPa, but the synoptic activity is also associated with upper-level ice clouds. Interestingly, the local ice formation mechanism appears to be more active when the large-scale subsidence rate implies increased cloud-top entrainment. Strong cloud-top radiative cooling rates promote cloud longevity when the cloud is optically thick. The radiative impact of the cloud upon the surface is significant: a time-mean positive net cloud forcing of 41 W m−2 with a diurnal amplitude of ∼20 W m−2. This is primarily because a high surface reflectance (0.86) reduces the solar cooling influence. The net cloud forcing is primarily sensitive to cloud optical depth for the low-optical-depth cloudy columns and to the surface reflectance for the high-optical-depth cloudy columns. Any projected increase in the springtime cloud optical depth at this location (76°N, 165°W) is not expected to significantly alter the surface radiation budget, because clouds were almost always present, and almost 60% of the cloudy columns had optical depths >6.
Abstract
The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixed-layer, mixed-phase cloud with an average temperature of approximately −20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using surface-based remote sensors, utilize the adiabatic assumption for the liquid component, and are aided by and validated with aircraft measurements from 4 and 7 May. The cloud radar ice microphysical retrievals, originally developed for all-ice clouds, compare well with aircraft measurements despite the presence of much greater liquid water contents than ice water contents. The retrieved time-mean liquid cloud optical depth of 10.1 ± 7.8 far surpasses the mean ice cloud optical depth of 0.2, so that the liquid phase is primarily responsible for the cloud’s radiative (flux) impact. The ice phase, in turn, regulates the overall cloud optical depth through two mechanisms: sedimentation from a thin upper ice cloud, and a local ice production mechanism with a time scale of a few hours, thought to reflect a preferred freezing of the larger liquid drops. The liquid water paths replenish within half a day or less after their uptake by ice, attesting to strong water vapor fluxes. Deeper boundary layer depths and higher cloud optical depths coincide with large-scale rising motion at 850 hPa, but the synoptic activity is also associated with upper-level ice clouds. Interestingly, the local ice formation mechanism appears to be more active when the large-scale subsidence rate implies increased cloud-top entrainment. Strong cloud-top radiative cooling rates promote cloud longevity when the cloud is optically thick. The radiative impact of the cloud upon the surface is significant: a time-mean positive net cloud forcing of 41 W m−2 with a diurnal amplitude of ∼20 W m−2. This is primarily because a high surface reflectance (0.86) reduces the solar cooling influence. The net cloud forcing is primarily sensitive to cloud optical depth for the low-optical-depth cloudy columns and to the surface reflectance for the high-optical-depth cloudy columns. Any projected increase in the springtime cloud optical depth at this location (76°N, 165°W) is not expected to significantly alter the surface radiation budget, because clouds were almost always present, and almost 60% of the cloudy columns had optical depths >6.
From 6 January to 28 February 1993, the second phase of the Pilot Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Routine data taken during PROBE included radiosondes released every 6 h and 915-MHz Wind Profiler–Radio Acoustic Sounding System (RASS) observations of winds and temperatures. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm−1 and measured some of the first high spectral resolution (1 cm−1) radiation data taken in the Tropics. The microwave radiometer provided continuous measurements within 30-s resolution of precipitable water vapor (PWV) and integrated cloud liquid, while the RASS measured virtual temperature profiles every 30 min. In addition, occasional lidar soundings of cloud-base heights were available. The MWSR and FTIR data taken during PROBE were compared with radiosonde data. Significant differences were noted between the MWSR and the radiosonde observations of PWV. The probability distribution of cloud liquid water was derived and is consistent with a lognormal distribution. During conditions that the MWSR did not indicate the presence of cloud liquid water, broadband long- and shortwave irradiance data were used to identify the presence of cirrus clouds or to confirm the presence of clear conditions. Comparisons are presented between measured and calculated radiance during clear conditions, using radiosonde data as input to a line-by-line Radiative Transfer Model. A case study is given of a drying event in which the PWV dropped from about 5.5 cm to a low of 3.8 cm during a 24-h period. The observations during the drying event are interpreted using PWV images obtained from data from the Defense Meteorological Satellite Program/Special Sensor Microwave/Imager and of horizontal flow measured by the wind profiler. The broadband irradiance data and the RASS soundings were also examined during the drying event.
From 6 January to 28 February 1993, the second phase of the Pilot Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Routine data taken during PROBE included radiosondes released every 6 h and 915-MHz Wind Profiler–Radio Acoustic Sounding System (RASS) observations of winds and temperatures. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm−1 and measured some of the first high spectral resolution (1 cm−1) radiation data taken in the Tropics. The microwave radiometer provided continuous measurements within 30-s resolution of precipitable water vapor (PWV) and integrated cloud liquid, while the RASS measured virtual temperature profiles every 30 min. In addition, occasional lidar soundings of cloud-base heights were available. The MWSR and FTIR data taken during PROBE were compared with radiosonde data. Significant differences were noted between the MWSR and the radiosonde observations of PWV. The probability distribution of cloud liquid water was derived and is consistent with a lognormal distribution. During conditions that the MWSR did not indicate the presence of cloud liquid water, broadband long- and shortwave irradiance data were used to identify the presence of cirrus clouds or to confirm the presence of clear conditions. Comparisons are presented between measured and calculated radiance during clear conditions, using radiosonde data as input to a line-by-line Radiative Transfer Model. A case study is given of a drying event in which the PWV dropped from about 5.5 cm to a low of 3.8 cm during a 24-h period. The observations during the drying event are interpreted using PWV images obtained from data from the Defense Meteorological Satellite Program/Special Sensor Microwave/Imager and of horizontal flow measured by the wind profiler. The broadband irradiance data and the RASS soundings were also examined during the drying event.
Abstract
The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.
Abstract
The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
Abstract
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from −0.2 ± 0.02 g C m–2 yr–1 for an upland forest site to 114.9 ± 13.4 g C m–2 yr–1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m–2 yr–1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average ±1.6 g C m–2 yr–1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.