Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Y. Durand x
  • All content x
Clear All Modify Search
P. Quintana-Seguí, P. Le Moigne, Y. Durand, E. Martin, F. Habets, M. Baillon, C. Canellas, L. Franchisteguy, and S. Morel


Système d’analyse fournissant des renseignements atmosphériques à la neige (SAFRAN) is a mesoscale atmospheric analysis system for surface variables. It produces an analysis at the hourly time step using ground data observations. One of SAFRAN’s main features is that it is based on climatically homogeneous zones and is able to take vertical variations into account. Originally intended for mountainous areas, it was later extended to cover France. This paper focuses on the validation of the extended version. The principle of the analysis is described and its quality was tested for five parameters (air temperature, humidity, wind speed, rainfall, and incoming radiation), using Météo-France’s observation network and data of some well-instrumented stations. Moreover, SAFRAN’s rainfall was compared with another analysis, known as analyse utilisant le relief pour l’hydrométéorologie (Aurelhy). Last, two different versions of SAFRAN were compared for mountain conditions. Temperature and relative humidity were well reproduced, presenting no bias. Wind speed was also well reproduced; however, its bias was −0.3 m s–1. The interpolation from the 6-h time step of the analysis to the 1-h time step was one of the sources of error. The precipitation analysis was robust and not biased; its root-mean-square error was 2.4 mm day−1. This error was mainly due to the spatial heterogeneity of the precipitation within the geographical zones of analysis (1000 km2). The analysis of incoming solar radiation presented some biases, especially in coastal areas. The results of the comparison with some well-instrumented sites were encouraging. SAFRAN is being run operationally at Météo-France on a real-time basis for various applications.

Full access
A. J. Dolman, J. Noilhan, P. Durand, C. Sarrat, A. Brut, B. Piguet, A. Butet, N. Jarosz, Y. Brunet, D. Loustau, E. Lamaud, L. Tolk, R. Ronda, F. Miglietta, B. Gioli, V. Magliulo, M. Esposito, C. Gerbig, S. Körner, P. Glademard, M. Ramonet, P. Ciais, B. Neininger, R. W. A. Hutjes, J. A. Elbers, R. Macatangay, O. Schrems, G. Pérez-Landa, M. J. Sanz, Y. Scholz, G. Facon, E. Ceschia, and P. Beziat

The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.

Full access