Search Results

You are looking at 1 - 10 of 41 items for

  • Author or Editor: Yan Du x
  • Refine by Access: All Content x
Clear All Modify Search
Yan Du and Yuhong Zhang

Abstract

This study investigates sea surface salinity (SSS) variations in the tropical Indian Ocean (IO) using the Aquarius/Satelite de Aplicaciones Cientificas-D (SAC-D) and the Soil Moisture and Ocean Salinity (SMOS) satellite data and the Argo observations during July 2010–July 2014. Compared to the Argo observations, the satellite datasets generally provide SSS maps with higher space–time resolution, particularly in the regions where Argo floats are sparse. Both Aquarius and SMOS well captured the SSS variations associated with the Indian Ocean dipole (IOD) mode. Significant SSS changes occurred in the central equatorial IO, along the Java–Sumatra coast, and south of the equatorial IO, due to ocean circulation variations. During the negative IOD events in 2010, 2013, and 2014, westerly wind anomalies strengthened along the equator, weakening coastal upwelling off Java and Sumatra and decreasing SSS. South of the equatorial IO, an anomalous cyclonic gyre changed the tropical circulation, which favored the eastward high-salinity tongue along the equator and the westward low-saline tongue in the south. An upwelling Rossby wave favored the increase of SSS farther to the south. During the positive IOD events in 2011 and 2012, the above-mentioned processes reversed, although the decrease of SSS was weaker in magnitude.

Full access
Yuhong Zhang and Yan Du

Abstract

This study analyzed the downwelling Rossby waves in the south Indian Ocean (IO)-induced spring asymmetric mode and the relationship with the Indian Ocean dipole (IOD) event based on observations and reanalysis datasets. The westward downwelling Rossby waves favor significant sea surface temperature (SST) warming in the Seychelles thermocline dome that triggers atmosphere response and the asymmetric mode in spring. The zonal sea level pressure gradient causes anomalous easterly winds in the central and eastern equatorial IO, cooling the SST off Sumatra–Java. Meanwhile, the remainder of the downwelling Rossby waves reach the west coast, transform to northward coastal-trapped waves, and then reflect as eastward downwelling Kelvin waves along the equator. The downwelling Kelvin waves reach the Sumatra–Java coast during late spring to early summer, favoring SST warming in the southeastern tropical Indian Ocean. Thus, there are two types of ocean–atmosphere response almost at the same time along the equator. The final SST status depends on which process is stronger and, as a consequence, triggers a negative or a positive phase of the IOD event in the fall season. The results show four positive and three negative IOD events related to the above processes from 1960 to 2019. The strong downwelling Rossby waves are easier to induce an intense asymmetric mode and negative IOD event, usually associated with preceding strong El Niño in the Pacific. In contrast, the weak downwelling Rossby waves tend to induce a weak asymmetric mode and positive IOD event, usually associated with preceding weak El Niño or anomalous anticyclonic atmospheric circulation in the southeastern IO.

Restricted access
Qiwei Sun and Yan Du

Abstract

Based on the abrupt-4XCO2 scenario in the Coupled Model Intercomparison Projects phase 6 (CMIP6), this study investigates the response of the rainfall changes to El Niño-like SST warming and the role of ocean dynamical processes in the salinity changes in the tropical Pacific. The results show that the Walker circulation weakening and eastward shift, related to El Niño-like SST warming, dominates the zonal precipitation change. Precipitation decreases (increases) in the Maritime Continent (the equatorial Pacific), partly offsetting the effect of specific humidity. At the same time, the El Niño-like warming triggers convergence of meridional winds, which leads to precipitation increase in the equatorial Pacific while a decrease in the Intertropical Convergence Zone and the South Pacific Convergence Zone, following the “warmer-get-wetter” mechanism. Unlike the spatial pattern of precipitation changes, the SSS changes become fresher in the tropical western Pacific, related to the precipitation and the mean horizontal advection. The precipitation increase leads to negative salinity anomalies in the equatorial central Pacific. The westward climatological zonal currents transport the negative salinity anomalies westward. The meridional currents advect the salinity anomalies to both sides of the equator, partly offsetting the contribution of the freshwater flux on the salinity change. In addition, shallower mixed layer depth and weakening upwelling bring less high-salinity water to the surface and impact salinity redistribution through the vertical process in the equatorial regions.

Restricted access
Gen Li, Shang-Ping Xie, and Yan Du

Abstract

Climate models consistently project reduced surface warming over the eastern equatorial Indian Ocean (IO) under increased greenhouse gas (GHG) forcing. This IO dipole (IOD)-like warming pattern, regarded as robust based on consistency among models by the new Intergovernmental Panel on Climate Change (IPCC) report, results in a large increase in the frequency of extreme positive IOD (pIOD) events, elevating the risk of climate and weather disasters in the future over IO rim countries. These projections, however, do not consider large model biases in both the mean state and interannual IOD variance. In particular, a “present–future relationship” is identified between the historical simulations and representative concentration pathway (RCP) 8.5 experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble: models with an excessive IOD amplitude bias tend to project a strong IOD-like warming pattern in the mean and a large increase in extreme pIOD occurrences under increased GHG forcing. This relationship links the present simulation errors to future climate projections, and is also consistent with our understanding of Bjerknes ocean–atmosphere feedback. This study calibrates regional climate projections by using this present–future relationship and observed IOD amplitude. The results show that the projected IOD-like pattern of mean changes and frequency increase of extreme pIOD events are largely artifacts of model errors and unlikely to emerge in the future. These results illustrate that a robust projection may still be biased and it is important to consider the model bias effect.

Full access
Yan Du, Tangdong Qu, and Gary Meyers

Abstract

Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.

Full access
Yuhong Zhang, Yan Du, and Ming Feng

Abstract

In this study, multiple time scale variability of the salinity dipole mode in the tropical Indian Ocean (S-IOD) is revealed based on the 57-yr Ocean Reanalysis System 4 (ORAS4) sea surface salinity (SSS) reanalysis product and associated observations. On the interannual time scale, S-IOD is highly correlated with strong Indian Ocean dipole (IOD) and ENSO variability, with ocean advection forced by wind anomalies along the equator and precipitation anomalies in the southeastern tropical Indian Ocean (IO) dominating the SSS variations in the northern and southern poles of the S-IOD, respectively. S-IOD variability is also associated with the decadal modulation of the Indo-Pacific Walker circulation, with a stronger signature at its southern pole. Decadal variations of the equatorial IO winds and precipitations in the central IO force zonal ocean advection anomalies that contribute to the SSS variability in the northern pole of S-IOD on the decadal time scale. Meanwhile, oceanic dynamics dominates the SSS variability in the southern pole of S-IOD off Western Australia. Anomalous ocean advection transports the fresher water from low latitudes to the region off Western Australia, with additional contributions from the Indonesian Throughflow. Furthermore, the southern pole of S-IOD is associated with the thermocline variability originated from the tropical northwestern Pacific through the waveguide in the Indonesian Seas, forced by decadal Pacific climate variability. A deepening (shoaling) thermocline strengthens (weakens) the southward advection of surface freshwater into the southern pole of S-IOD and contributes to the high (low) SSS signatures off Western Australia.

Full access
Gen Li, Shang-Ping Xie, and Yan Du

Abstract

An open-ocean thermocline dome south of the equator is a striking feature of the Indian Ocean (IO) as a result of equatorial westerly winds. Over the thermocline dome, the El Niño–forced Rossby waves help sustain the IO basin (IOB) mode and offer climate predictability for the IO and surrounding countries. This study shows that a common equatorial easterly wind bias, by forcing a westward-propagating downwelling Rossby wave in the southern IO, induces too deep a thermocline dome over the southwestern IO (SWIO) in state-of-the-art climate models. Such a deep SWIO thermocline weakens the influence of subsurface variability on sea surface temperature (SST), reducing the IOB amplitude and possibly limiting the models’ skill of regional climate prediction. To the extent that the equatorial easterly wind bias originates from errors of the South Asian summer monsoon, improving the monsoon simulation can lead to substantial improvements in simulating and predicting interannual variability in the IO.

Full access
Yan Du, Wenju Cai, and Yanling Wu

Abstract

The tropical Indian Ocean dipole/zonal mode (IOD) is phase locked with the austral winter and spring seasons. This study describes three types of the IOD in terms of their peak time and duration. In particular, the authors focus on a new type that develops in May–June and matures in July–August, which is distinctively different from the canonical IOD, which may develop later and peak in September–November or persist from June to November. Such “unseasonable” IOD events are only observed since the mid-1970s, a period after which the tropical Indian Ocean has a closer relationship with the Pacific Ocean. The unseasonable IOD is an intrinsic mode of the Indian Ocean and occurs without an ensuing El Niño. A change in winds along the equator is identified as a major forcing. The wind change is in turn related to a weakening Walker circulation in the Indian Ocean sector in austral winter, which is in part forced by the rapid Indian Ocean warming. Thus, although the occurrence of the unseasonable IOD may be partially influenced by oceanic variability, the authors’ results suggest an influence from the Indian Ocean warming. This suggestion, however, awaits further investigation using fully coupled climate models.

Full access
Tianyu Wang, Yan Du, and Minyang Wang

Abstract

An Argo simulation system is used to provide synthetic Lagrangian trajectories based on the Estimating the Circulation and Climate of the Ocean Model, phase II (ECCO2). In combination with ambient Eulerian velocity at the reference layer (1000 m) from the model, quantitative metrics of the Lagrangian trajectory–derived velocities are computed. The result indicates that the biases induced by the derivation algorithm are strongly linked with ocean dynamics. In low latitudes, Ekman currents and vertically sheared geostrophic currents influence both the magnitude and the direction of the derivation velocity vectors. The maximal shear-induced biases exist near the equator with the amplitudes reaching up to about 1.2 cm s−1. The angles of the shear biases are pronounced in the low-latitude oceans, ranging from −8° to 8°. Specifically, the study shows an overlooked bias from the float drifting motions that mainly occurs in the western boundary current and Antarctic Circumpolar Current (ACC) regions. In these regions, a recently reported horizontal acceleration measured via Lagrangian floats is significantly associated with the strong eddy–jet interactions. The acceleration could induce an overestimation of Eulerian current velocity magnitudes. For the common Argo floats with a 9-day float parking period, the derivation speed biases induced by velocity acceleration would be as large as 3 cm s−1, approximately 12% of the ambient velocity. It might have implications to map the mean middepth ocean currents from Argo trajectories, as well as to understand the dynamics of eddy–jet interactions in the ocean.

Restricted access
Gen Li, Shang-Ping Xie, and Yan Du

Abstract

Long-standing biases of climate models limit the skills of climate prediction and projection. Overlooked are tropical Indian Ocean (IO) errors. Based on the phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble, the present study identifies a common error pattern in climate models that resembles the IO dipole (IOD) mode of interannual variability in nature, with a strong equatorial easterly wind bias during boreal autumn accompanied by physically consistent biases in precipitation, sea surface temperature (SST), and subsurface ocean temperature. The analyses show that such IOD-like biases can be traced back to errors in the South Asian summer monsoon. A southwest summer monsoon that is too weak over the Arabian Sea generates a warm SST bias over the western equatorial IO. In boreal autumn, Bjerknes feedback helps amplify the error into an IOD-like bias pattern in wind, precipitation, SST, and subsurface ocean temperature. Such mean state biases result in an interannual IOD variability that is too strong. Most models project an IOD-like future change for the boreal autumn mean state in the global warming scenario, which would result in more frequent occurrences of extreme positive IOD events in the future with important consequences to Indonesia and East Africa. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) characterizes this future IOD-like projection in the mean state as robust based on consistency among models, but the authors’ results cast doubts on this conclusion since models with larger IOD amplitude biases tend to produce stronger IOD-like projected changes in the future.

Full access