Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yangyang Xu x
  • Refine by Access: All Content x
Clear All Modify Search
Yangyang Xu
and
Aixue Hu

Abstract

Decadal climate variability of sea surface temperature (SST) over the Pacific Ocean can be characterized by interdecadal Pacific oscillation (IPO) or Pacific decadal oscillation (PDO) based on empirical orthogonal function (EOF) analysis. Although the procedures to derive the IPO and PDO indices differ in their regional focuses and filtering methods to remove interannual variability, the IPO and PDO are highly correlated in time and are often used interchangeably. Studies have shown that the IPO and PDO conjointly (IPO/PDO for conciseness) play a vital role in modulating the pace of global warming. It is less clear, however, how externally forced global warming may, in turn, affect the IPO/PDO. One obstacle to revealing this effect is that the conventional definitions of the IPO/PDO fail to account for the spatial heterogeneity of the background warming trend, which causes the IPO/PDO to be conflated with the warming trend, especially for the twenty-first-century simulation when the forced change is likely to be more dominant. Using a large-ensemble simulation in the Community Earth System Model, version 1 (CESM1), it is shown here that a better practice of detrending prior to EOF analysis is to remove the local and nonlinear trend, defined as the ensemble-mean time series at each grid box (or simply as the quadratic fit of the local time series if such an ensemble is not available). The revised IPO/PDO index is purely indicative of internal decadal variability. In the twenty-first-century warmer climate, the IPO/PDO has a weaker amplitude in space, a higher frequency in time, and a muted impact on global and North American temperature and rainfall.

Full access
Yu Du
,
Qinghong Zhang
,
Yi-leng Chen
,
Yangyang Zhao
, and
Xu Wang

Abstract

The detailed spatial distributions and diurnal variations of low-level jets (LLJs) during early summer (May–July) in China are documented using 2006–11 hourly model data from the Weather Research and Forecasting (WRF) Model with a 9-km horizontal resolution. It was found that LLJs frequently occur in the following regions of China: the Tarim basin, northeastern China, the Tibetan Plateau (TP), and southern China. The LLJs over China are classified into two types: boundary layer jets (BLJs, below 1 km) and synoptic-system-related LLJs (SLLJs, within 1–4 km). The LLJs in the Tarim basin and the TP are mainly BLJs. The SLLJs over southern China and northeastern China are associated with the mei-yu front and northeast cold vortex (NECV), respectively.

The BLJs in all regions show pronounced diurnal variations with maximum occurrences at nighttime or in the early morning, whereas diurnal variations of SLLJs vary, depending on the location. From the analysis of model data, the diurnal variation of BLJs is mainly caused by inertial oscillation at nighttime and vertical mixing in the boundary layer during daytime. Over northeastern China, SLLJ occurrences show little diurnal variation. Over southern China, two diurnal modes of SLLJs, propagation and stationary, exist and have seasonal variations, which is generally consistent with diurnal variations of precipitation.

Full access
Xiang Xiao
,
Yangyang Xu
,
Xiaorui Zhang
,
Fan Wang
,
Xiao Lu
,
Zongwei Cai
,
Guy Brasseur
, and
Meng Gao

Abstract

Climate change and air pollution are two intimately interlinked global concerns. The frequency, intensity, and duration of heat waves are projected to increase globally under future climate change. A growing body of evidence indicates that health risks associated with the joint exposure to heat waves and air pollution can be greater than that due to individual factors. However, the cooccurrences of heat and air pollution extremes in China remain less explored in the observational records. Here we investigate the spatial pattern and temporal trend of frequency, intensity, and duration of cooccurrences of heat and air pollution extremes using China’s nationwide observations of hourly PM2.5 and O3, and the ERA5 reanalysis dataset over 2013–20. We identify a significant increase in the frequency of cooccurrence of wet-bulb temperature (Tw ) and O3 exceedances (beyond a certain predefined threshold), mainly in the Beijing–Tianjin–Hebei (BTH) region (up by 4.7 days decade−1) and the Yangtze River delta (YRD). In addition, we find that the increasing rate (compared to the average levels during the study period) of joint exceedance is larger than the rate of Tw and O3 itself. For example, Tw and O3 coextremes increased by 7.0% in BTH, higher than the percentage increase of each at 0.9% and 5.5%, respectively. We identify same amplification for YRD. This ongoing upward trend in the joint occurrence of heat and O3 extremes should be recognized as an emerging environmental issue in China, given the potentially larger compounding impact to public health.

Full access