Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Yannick Peings x
  • All content x
Clear All Modify Search
Yannick Peings and Gudrun Magnusdottir

Abstract

The wintertime Northern Hemisphere (NH) atmospheric circulation response to current (2007–12) and projected (2080–99) Arctic sea ice decline is examined with the latest version of the Community Atmospheric Model (CAM5). The numerical experiments suggest that the current sea ice conditions force a remote atmospheric response in late winter that favors cold land surface temperatures over midlatitudes, as has been observed in recent years. Anomalous Rossby waves forced by the sea ice anomalies penetrate into the stratosphere in February and weaken the stratospheric polar vortex, resulting in negative anomalies of the northern annular mode (NAM) that propagate downward during the following weeks, especially over the North Pacific. The seasonality of the response is attributed to timing of the phasing between the forced and climatological waves. When sea ice concentration taken from projections of conditions at the end of the twenty-first century is prescribed to the model, negative anomalies of the NAM are visible in the troposphere, both in early and late winter. This response is mainly driven by the large warming of the lower troposphere over the Arctic, as little impact is found in the stratosphere in this experiment. As a result of the thermal expansion of the polar troposphere, the westerly flow is decelerated and a weak but statistically significant increase of the midlatitude meanders is identified. However, the thermodynamical response extends beyond the Arctic and offsets the dynamical effect, such that the stronger sea ice forcing has limited impact on the intensity of cold extremes over midlatitudes.

Full access
Graham R. Simpkins, Yannick Peings, and Gudrun Magnusdottir

Abstract

Several recent studies have connected Antarctic climate variability to tropical Atlantic sea surface temperatures (SST), proposing a Rossby wave response from the Atlantic as the primary dynamical mechanism. In this investigation, reanalysis data and atmospheric general circulation model experiments are used to further diagnose these dynamical links. Focus is placed on the possible mediating role of Pacific processes, motivated by the similar spatial characteristics of Southern Hemisphere (SH) teleconnections associated with tropical Atlantic and Pacific SST variability. During austral winter (JJA), both reanalyses and model simulations reveal that Atlantic teleconnections represent a two-mechanism process, whereby increased tropical Atlantic SST promotes two conditions: 1) an intensification of the local Atlantic Hadley circulation (HC), driven by enhanced interaction between SST anomalies and the ITCZ, that increases convergence at the descending branch, establishing anomalous vorticity forcing from which a Rossby wave emanates, expressed as a pattern of alternating positive and negative geopotential height anomalies across the SH extratropics (the so-called HC-driven components); and 2) perturbations to the zonal Walker circulation (WC), driven primarily by an SST-induced amplification, that creates a pattern of anomalous upper-level convergence across the central/western Pacific, from which an ENSO-like Rossby wave train can be triggered (the so-called WC-driven components). While the former are found to dominate, the WC-driven components play a subsidiary yet important role. Indeed, it is the superposition of these two separate but interrelated mechanisms that gives the overall observed response. By demonstrating an additional Pacific-related component to Atlantic teleconnections, this study highlights the need to consider Atlantic–Pacific interactions when diagnosing tropical-related climate variability in the SH extratropics.

Full access
Colene Haffke, Gudrun Magnusdottir, Daniel Henke, Padhraic Smyth, and Yannick Peings

Abstract

Zonally elongated areas of cloudiness that make up the east Pacific intertropical convergence zone (ITCZ) can take on several configurations in instantaneous observations. A novel statistical model is used to automatically assess the daily state of the east Pacific ITCZ using infrared satellite images from 1980 to 2012. Four ITCZ states are defined based on ITCZ location relative to the equator: north (nITCZ) and south (sITCZ) of the equator, simultaneously north and south of the equator (dITCZ, for double ITCZ), and over the equator (eITCZ). A fifth ITCZ state is used to classify days when no zonally elongated area of cloudiness is present (aITCZ, for absent ITCZ). The ITCZ states can occur throughout the year (except for the eITCZ, which is not present during June–October), with the nITCZ state dominating in terms of frequency of occurrence. Interannual variability of the state distribution is large.

The most striking variability in ITCZ states is observed in spring. During March–April, the dITCZ state occurs on average 34% of the time, second only to the nITCZ state (39%). Composites of observed infrared temperature and precipitation by ITCZ state reveal distinct spatial configurations of cloudiness and rainfall. Strong sea surface temperature anomalies are associated only with eITCZ and sITCZ and they correspond to El Niño and La Niña, respectively. However, all five ITCZ states are associated with distinct atmospheric circulation patterns. A connection is found between the ITCZ and the South Pacific convergence zone (SPCZ), such that activity in the SPCZ is enhanced when the ITCZ is absent in the east Pacific.

Full access
Eric Brun, Vincent Vionnet, Aaron Boone, Bertrand Decharme, Yannick Peings, Rémi Valette, Fatima Karbou, and Samuel Morin

Abstract

The Crocus snowpack model within the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model was run over northern Eurasia from 1979 to 1993, using forcing data extracted from hydrometeorological datasets and meteorological reanalyses. Simulated snow depth, snow water equivalent, and density over open fields were compared with local observations from over 1000 monitoring sites, available either once a day or three times per month. The best performance is obtained with European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim). Provided blowing snow sublimation is taken into account, the simulations show a small bias and high correlations in terms of snow depth, snow water equivalent, and density. Local snow cover durations as well as the onset and vanishing dates of continuous snow cover are also well reproduced. A major result is that the overall performance of the simulations is very similar to the performance of existing gridded snow products, which, in contrast, assimilate local snow depth observations. Soil temperature at 20-cm depth is reasonably well simulated. The methodology developed in this study is an efficient way to evaluate different meteorological datasets, especially in terms of snow precipitation. It reveals that the temporal disaggregation of monthly precipitation in the hydrometeorological dataset from Princeton University significantly impacts the rain–snow partitioning, deteriorating the simulation of the onset of snow cover as well as snow depth throughout the cold season.

Full access
Stephen J. Vavrus, Fuyao Wang, Jonathan E. Martin, Jennifer A. Francis, Yannick Peings, and Julien Cattiaux

Abstract

This study tests the hypothesis that Arctic amplification (AA) of global warming remotely affects midlatitudes by promoting a weaker, wavier atmospheric circulation conducive to extreme weather. The investigation is based on the late twenty-first century over greater North America (20°–90°N, 50°–160°W) using 40 simulations from the Community Earth System Model Large Ensemble, spanning 1920–2100. AA is found to promote regionally varying ridging aloft (500 hPa) with strong seasonal differences reflecting the location of the strongest surface thermal forcing. During winter, maximum increases in future geopotential heights are centered over the Arctic Ocean, in conjunction with sea ice loss, but minimum height increases (troughing) occur to the south, over the continental United States. During summer the location of maximum height inflation shifts equatorward, forming an annular band across mid-to-high latitudes of the entire Northern Hemisphere. This band spans the continents, whose enhanced surface heating is aided by antecedent snow-cover loss and reduced terrestrial heat capacity. Through the thermal wind relationship, midtropospheric winds weaken on the equatorward flank of both seasonal ridging anomalies—mainly over Canada during winter and even more over the continental United States during summer—but strengthen elsewhere to form a dipole anomaly pattern in each season. Changes in circulation waviness, expressed as sinuosity, are inversely correlated with changes in zonal wind speed at nearly all latitudes, both in the projections and as observed during recent decades. Over the central United States during summer, the weaker and wavier flow promotes drying and enhanced heating, thus favoring more intense summer weather.

Full access
Dillon Elsbury, Yannick Peings, David Saint-Martin, Hervé Douville, and Gudrun Magnusdottir

Abstract

The interdecadal Pacific oscillation (hereafter termed IPV, using “variability” in lieu of “oscillation”) and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of low-frequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positive AMV is included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV–AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere.

Full access