Search Results
You are looking at 1 - 10 of 36 items for
- Author or Editor: Yi Liu x
- Refine by Access: All Content x
Abstract
This study investigates the regional atmospheric response to the Kuroshio Extension (KE) using a combination of multiple satellite observations and reanalysis data from boreal winter over a period of at least a decade. The goal is to understand the relationship between KE variations and atmospheric responses at low frequencies. A climate index is used to measure the interannual to decadal KE variability, which leaves remarkable imprints on the mesoscale sea surface temperature (SST). Clear spatial coherence between the SST signals and frontal-scale atmospheric variables, including surface wind convergence, vertical velocity, precipitation, and clouds, is identified by linear regression analysis. Consistent with previous studies, the penetrating effect of the KE variability on the free atmosphere is found. The westward tilt of the atmospheric response above the KE near 500 hPa is revealed. The difference in the associations of frontal-scale air temperature and geopotential height with the KE variability between the satellite observations and the reanalysis data suggests an imperfect interpretation of frontal-scale oceanic forcing on the overlying atmosphere in the reanalysis assimilation system.
Abstract
This study investigates the regional atmospheric response to the Kuroshio Extension (KE) using a combination of multiple satellite observations and reanalysis data from boreal winter over a period of at least a decade. The goal is to understand the relationship between KE variations and atmospheric responses at low frequencies. A climate index is used to measure the interannual to decadal KE variability, which leaves remarkable imprints on the mesoscale sea surface temperature (SST). Clear spatial coherence between the SST signals and frontal-scale atmospheric variables, including surface wind convergence, vertical velocity, precipitation, and clouds, is identified by linear regression analysis. Consistent with previous studies, the penetrating effect of the KE variability on the free atmosphere is found. The westward tilt of the atmospheric response above the KE near 500 hPa is revealed. The difference in the associations of frontal-scale air temperature and geopotential height with the KE variability between the satellite observations and the reanalysis data suggests an imperfect interpretation of frontal-scale oceanic forcing on the overlying atmosphere in the reanalysis assimilation system.
Abstract
The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) platform is used to simulate Lagrangian trajectories of air parcels in East China during the summer monsoon. The investigation includes four distinct stages of the East Asian summer monsoon (EASM) during its seasonal migration from south to north. Correspondingly, the main water vapor channel migrates from the west Pacific Ocean (PO) for the premonsoon in South China (SC) to the Indian Ocean (IO) for the monsoon in SC and in the Yangtze–Huaihe River basin, and finally back to the PO for the terminal stage of monsoon in North China. Further calculations permit us to determine water vapor source regions and water vapor contribution to precipitation in East China. To a large extent, moisture leading to precipitation does not come from the strongest water vapor pathways. For example, the proportions of trajectories from the IO are larger than 25% all of the time, but moisture contributions to actual precipitation are smaller than 10%. This can be explained by the large amount of water vapor lost in the pathways across moisture-losing areas such as the Indian and Indochina Peninsulas. Local water vapor recycling inside East China (EC) contributes significantly to regional precipitation, with contributions mostly over 30%, although the trajectory proportions from subregions in EC are all under 10%. This contribution rate can even exceed 55% for the terminal stage of the monsoon in North China. Such a result provides important guidance to understand the role of land surface conditions in modulating rainfall in North China.
Abstract
The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) platform is used to simulate Lagrangian trajectories of air parcels in East China during the summer monsoon. The investigation includes four distinct stages of the East Asian summer monsoon (EASM) during its seasonal migration from south to north. Correspondingly, the main water vapor channel migrates from the west Pacific Ocean (PO) for the premonsoon in South China (SC) to the Indian Ocean (IO) for the monsoon in SC and in the Yangtze–Huaihe River basin, and finally back to the PO for the terminal stage of monsoon in North China. Further calculations permit us to determine water vapor source regions and water vapor contribution to precipitation in East China. To a large extent, moisture leading to precipitation does not come from the strongest water vapor pathways. For example, the proportions of trajectories from the IO are larger than 25% all of the time, but moisture contributions to actual precipitation are smaller than 10%. This can be explained by the large amount of water vapor lost in the pathways across moisture-losing areas such as the Indian and Indochina Peninsulas. Local water vapor recycling inside East China (EC) contributes significantly to regional precipitation, with contributions mostly over 30%, although the trajectory proportions from subregions in EC are all under 10%. This contribution rate can even exceed 55% for the terminal stage of the monsoon in North China. Such a result provides important guidance to understand the role of land surface conditions in modulating rainfall in North China.
Abstract
Satellite-based precipitation products are commonly evaluated using gauge measurement, yet their regional evaluation and hydrological applicability have not been sufficiently studied, especially for dry basins. In this study, we evaluated the performance of four state-of-the-art remotely sensed precipitation products (CMORPH, GSMaP, IMERG, and PERSIANN-CDR) and their ensemble products (the reliability ensemble averaging and three-cornered hat methods) over the Heihe River basin, northwest China. Both direct evaluation using gauge measurement during 2001–19 and indirect evaluation using the Soil and Water Assessment Tool (SWAT) model during 2001–10 were conducted. Our results showed that 1) for point-to-pixel evaluation, GSMaP and IMERG products with high spatial resolution effectively captured the quantile distribution of gauge data; 2) compared to the spatially interpolated gauge data, all products underestimated the precipitation, among which GSMaP provided the closest interannual variability to the observations; 3) these products had better detection abilities upstream and during the rainy season, indicating that their performance was affected by the rain intensity—in particular, GSMaP exhibited the best ability; 4) the spatial patterns of individual products were inconsistent, while the ensemble products could reduce the bias with the gauge data; and 5) for hydrological modeling, streamflow simulation driven by GSMaP had the best performance, and the ensemble precipitation using the three-cornered hat method was better than that using the reliability ensemble averaging method. Collectively, these findings illustrated the reliability of GSMaP in representing the precipitation characteristics in similar arid areas and elucidated the advantages of using the three-cornered hat method.
Abstract
Satellite-based precipitation products are commonly evaluated using gauge measurement, yet their regional evaluation and hydrological applicability have not been sufficiently studied, especially for dry basins. In this study, we evaluated the performance of four state-of-the-art remotely sensed precipitation products (CMORPH, GSMaP, IMERG, and PERSIANN-CDR) and their ensemble products (the reliability ensemble averaging and three-cornered hat methods) over the Heihe River basin, northwest China. Both direct evaluation using gauge measurement during 2001–19 and indirect evaluation using the Soil and Water Assessment Tool (SWAT) model during 2001–10 were conducted. Our results showed that 1) for point-to-pixel evaluation, GSMaP and IMERG products with high spatial resolution effectively captured the quantile distribution of gauge data; 2) compared to the spatially interpolated gauge data, all products underestimated the precipitation, among which GSMaP provided the closest interannual variability to the observations; 3) these products had better detection abilities upstream and during the rainy season, indicating that their performance was affected by the rain intensity—in particular, GSMaP exhibited the best ability; 4) the spatial patterns of individual products were inconsistent, while the ensemble products could reduce the bias with the gauge data; and 5) for hydrological modeling, streamflow simulation driven by GSMaP had the best performance, and the ensemble precipitation using the three-cornered hat method was better than that using the reliability ensemble averaging method. Collectively, these findings illustrated the reliability of GSMaP in representing the precipitation characteristics in similar arid areas and elucidated the advantages of using the three-cornered hat method.
Abstract
The typhoons with concentric eyewalls (CE) over the western North Pacific in different phases of the El Niño–Southern Oscillation (ENSO) between 1997 and 2012 are studied. They find a good correlation (0.72) between the annual CE typhoon number and the oceanic Niño index (ONI), with most of the CE typhoons occurring in the warm and neutral episodes. In the warm (neutral) episode, 55% (50%) of the typhoons possessed a CE structure. In contrast, only 25% of the typhoons possessed a CE structure in the cold episode. The CE formation frequency is also significantly different with 0.9 (0.2) CEs per month in the warm (cold) episode. There are more long-lived CE cases (CE structure maintained more than 20 h) and typhoons with multiple CE formations in the warm episodes. There are no typhoons with multiple CE formations in the cold episode. The warm episode CE typhoons generally have a larger size, stronger intensity, and smaller variation in convective activity and intensity. This may be due to the fact that the CE formation location is farther east in the warm episodes. Shifts in CE typhoon location with favorable conditions thus produce long-lived CE typhoons and multiple CE formations. The multiple CE formations may lead to expansion of the typhoon size.
Abstract
The typhoons with concentric eyewalls (CE) over the western North Pacific in different phases of the El Niño–Southern Oscillation (ENSO) between 1997 and 2012 are studied. They find a good correlation (0.72) between the annual CE typhoon number and the oceanic Niño index (ONI), with most of the CE typhoons occurring in the warm and neutral episodes. In the warm (neutral) episode, 55% (50%) of the typhoons possessed a CE structure. In contrast, only 25% of the typhoons possessed a CE structure in the cold episode. The CE formation frequency is also significantly different with 0.9 (0.2) CEs per month in the warm (cold) episode. There are more long-lived CE cases (CE structure maintained more than 20 h) and typhoons with multiple CE formations in the warm episodes. There are no typhoons with multiple CE formations in the cold episode. The warm episode CE typhoons generally have a larger size, stronger intensity, and smaller variation in convective activity and intensity. This may be due to the fact that the CE formation location is farther east in the warm episodes. Shifts in CE typhoon location with favorable conditions thus produce long-lived CE typhoons and multiple CE formations. The multiple CE formations may lead to expansion of the typhoon size.
Abstract
This paper presents an observational and numerical study of Typhoon Mindulle (2004) as it affected Taiwan. Mindulle made landfall on the east coast of Taiwan at 1500 UTC 1 July 2004, and after 13 h, it exited Taiwan from the north coast. Severe rainfall (with a maximum amount of 787 mm) occurred over central-southwestern Taiwan on 2 July 2004. During the landfall of Mindulle’s main circulation, a secondary low formed over the Taiwan Strait. However, the secondary low, after it developed significantly (vorticity exceeded 5 × 10−4 s−1 over a 30-km radius), did not replace the original center as was observed in many other storms. Instead, it moved inland and dissipated after the original center redeveloped near the north coast of Taiwan. In this study, the evolution of the secondary low, the redevelopment of the primary center, and the processes leading to the severe rainfall were examined. Results showed that the processes leading to the formation and the development of the secondary low were similar to those described in previous studies. These processes include the leeside subsidence warming, the horizontal transport of vorticity around the northern tip of the Central Mountain Range (CMR), and the overmountain upper-level vorticity remnant. However, because of the northward track, Mindulle preserved some strong vorticity on the eastern slope of the CMR. This strong vorticity remnant was steered northward over the ocean offshore from the north coast where the redevelopment of the primary center occurred. This “quasi-continuous track” of Mindulle has not been documented in previous studies. The vortex interaction between the redeveloped primary center and the secondary low resulted in the northeastward movement of the secondary low, which then dissipated after making landfall. Analyses also showed that even though heavy rainfall would occur over the mountain area when only the southwesterly flow prevailed, as on 3 July 2004, Typhoon Mindulle and the secondary low provided extra convergence that resulted in the west–east-oriented convective bands. These convective bands and the orographic lifting of the circulation associated with the secondary low resulted in the heavy rainfall over the central-western plains area.
Abstract
This paper presents an observational and numerical study of Typhoon Mindulle (2004) as it affected Taiwan. Mindulle made landfall on the east coast of Taiwan at 1500 UTC 1 July 2004, and after 13 h, it exited Taiwan from the north coast. Severe rainfall (with a maximum amount of 787 mm) occurred over central-southwestern Taiwan on 2 July 2004. During the landfall of Mindulle’s main circulation, a secondary low formed over the Taiwan Strait. However, the secondary low, after it developed significantly (vorticity exceeded 5 × 10−4 s−1 over a 30-km radius), did not replace the original center as was observed in many other storms. Instead, it moved inland and dissipated after the original center redeveloped near the north coast of Taiwan. In this study, the evolution of the secondary low, the redevelopment of the primary center, and the processes leading to the severe rainfall were examined. Results showed that the processes leading to the formation and the development of the secondary low were similar to those described in previous studies. These processes include the leeside subsidence warming, the horizontal transport of vorticity around the northern tip of the Central Mountain Range (CMR), and the overmountain upper-level vorticity remnant. However, because of the northward track, Mindulle preserved some strong vorticity on the eastern slope of the CMR. This strong vorticity remnant was steered northward over the ocean offshore from the north coast where the redevelopment of the primary center occurred. This “quasi-continuous track” of Mindulle has not been documented in previous studies. The vortex interaction between the redeveloped primary center and the secondary low resulted in the northeastward movement of the secondary low, which then dissipated after making landfall. Analyses also showed that even though heavy rainfall would occur over the mountain area when only the southwesterly flow prevailed, as on 3 July 2004, Typhoon Mindulle and the secondary low provided extra convergence that resulted in the west–east-oriented convective bands. These convective bands and the orographic lifting of the circulation associated with the secondary low resulted in the heavy rainfall over the central-western plains area.
Abstract
To better understand the change in California’s climate over the past century, the long-term variability and extreme events of precipitation as well as minimum, mean, and maximum temperatures during the rainy season (from November to March) are investigated using observations. Their relationships to 28 rainy season average climate indices with and without time lags are also studied. The precipitation variability is found to be highly correlated with the tropical/Northern Hemisphere pattern (TNH) index at zero time lag with the highest correlation in Northern California and the Sierra and the correlation decreasing southward. This is an important finding because there have been no conclusive studies on the dominant climate modes that modulate precipitation variability in Northern California. It is found that the TNH modulates California precipitation variability through the development of a positive (negative) height anomaly and its associated low-level moisture fluxes over the northeast Pacific Ocean during the positive (negative) TNH phase. Temperature fields, especially minimum temperature, are found to be primarily modulated by the east Pacific/North Pacific pattern, Pacific decadal oscillation, North Pacific pattern, and Pacific–North American pattern at zero time lag via changes in the lower-tropospheric temperature advections. Regression analysis suggests a combination of important climate indices would improve predictability for precipitation and minimum temperature statewide and subregionally compared to the use of a single climate index. While California’s precipitation currently is primarily projected by ENSO, this study suggests that using the combination of the TNH and ENSO indices results in better predictability than using ENSO indices only.
Abstract
To better understand the change in California’s climate over the past century, the long-term variability and extreme events of precipitation as well as minimum, mean, and maximum temperatures during the rainy season (from November to March) are investigated using observations. Their relationships to 28 rainy season average climate indices with and without time lags are also studied. The precipitation variability is found to be highly correlated with the tropical/Northern Hemisphere pattern (TNH) index at zero time lag with the highest correlation in Northern California and the Sierra and the correlation decreasing southward. This is an important finding because there have been no conclusive studies on the dominant climate modes that modulate precipitation variability in Northern California. It is found that the TNH modulates California precipitation variability through the development of a positive (negative) height anomaly and its associated low-level moisture fluxes over the northeast Pacific Ocean during the positive (negative) TNH phase. Temperature fields, especially minimum temperature, are found to be primarily modulated by the east Pacific/North Pacific pattern, Pacific decadal oscillation, North Pacific pattern, and Pacific–North American pattern at zero time lag via changes in the lower-tropospheric temperature advections. Regression analysis suggests a combination of important climate indices would improve predictability for precipitation and minimum temperature statewide and subregionally compared to the use of a single climate index. While California’s precipitation currently is primarily projected by ENSO, this study suggests that using the combination of the TNH and ENSO indices results in better predictability than using ENSO indices only.
Abstract
Climate models project an enhancement in SST seasonal cycle over the midlatitude oceans under global warming. The underlying mechanisms are investigated using a set of partially coupled experiments, in which the contribution from direct CO2 effects (i.e., the response in the absence of wind change) and wind feedbacks can be isolated from each other. Results indicate that both the direct CO2 and wind effects contribute to the enhancement in the SST seasonal cycle, with the former (latter) being more important in the Northern Hemisphere (Southern Hemisphere). Further decomposition of the wind effect into the wind stress feedback and wind speed feedback reveals the importance of the wind stress–driven ocean response in the change of SST seasonal cycle, a result in contrast to a previous study that ascribed the midlatitude SST seasonal cycle change to the thermodynamic wind speed feedback. The direct CO2 effect regulates the SST seasonal cycle through the warming-induced shoaling in the annual mean mixed layer depth (MLD) as well as the MLD difference between winter and summer. Moreover, the surface wind seasonal cycle changes due solely to the direct CO2 effect are found to bear a great resemblance to the full wind response, suggesting that the root cause for the enhancement of the midlatitude SST seasonal cycle resides in the direct CO2 effect. This notion is further supported by an ocean-alone experiment that reproduces the SST seasonal cycle enhancement under a spatially and temporally homogeneous surface thermal forcing.
Abstract
Climate models project an enhancement in SST seasonal cycle over the midlatitude oceans under global warming. The underlying mechanisms are investigated using a set of partially coupled experiments, in which the contribution from direct CO2 effects (i.e., the response in the absence of wind change) and wind feedbacks can be isolated from each other. Results indicate that both the direct CO2 and wind effects contribute to the enhancement in the SST seasonal cycle, with the former (latter) being more important in the Northern Hemisphere (Southern Hemisphere). Further decomposition of the wind effect into the wind stress feedback and wind speed feedback reveals the importance of the wind stress–driven ocean response in the change of SST seasonal cycle, a result in contrast to a previous study that ascribed the midlatitude SST seasonal cycle change to the thermodynamic wind speed feedback. The direct CO2 effect regulates the SST seasonal cycle through the warming-induced shoaling in the annual mean mixed layer depth (MLD) as well as the MLD difference between winter and summer. Moreover, the surface wind seasonal cycle changes due solely to the direct CO2 effect are found to bear a great resemblance to the full wind response, suggesting that the root cause for the enhancement of the midlatitude SST seasonal cycle resides in the direct CO2 effect. This notion is further supported by an ocean-alone experiment that reproduces the SST seasonal cycle enhancement under a spatially and temporally homogeneous surface thermal forcing.
Abstract
Heavy rainfall from typhoons or tropical cyclones often causes inland flooding and mudslides that threaten lives and property. In this study, Special Sensor Microwave Imager (SSM/I) satellite data observed from 2000 to 2004 were used to calculate the rainfall rates of different typhoons in the northwestern Pacific. Geostationary weather satellite infrared images were also applied to estimate the typhoon rotation speed via the maximum cross-correlation technique. By including such information in the tropical rainfall potential (TRaP) technique, an improved typhoon rainfall potential technique can be constructed.
Considering the fact that a typhoon’s spiral rainbands move constantly, half-hourly or hourly infrared data observed from geostationary weather satellites were used to calculate the revolving speed, which was subsequently used to predict the rainband movement over the next hour. After comparing the predicted rainfall potential with the rain gauge data of Taiwan’s small offshore islands, it was found that this new method can improve the typhoon’s accumulated rainfall by approximately 40% over the original TRaP method. Therefore, to produce a more accurate short-term typhoon rainfall forecast, it is very important to factor in the satellite-estimated storm rotation speed.
Abstract
Heavy rainfall from typhoons or tropical cyclones often causes inland flooding and mudslides that threaten lives and property. In this study, Special Sensor Microwave Imager (SSM/I) satellite data observed from 2000 to 2004 were used to calculate the rainfall rates of different typhoons in the northwestern Pacific. Geostationary weather satellite infrared images were also applied to estimate the typhoon rotation speed via the maximum cross-correlation technique. By including such information in the tropical rainfall potential (TRaP) technique, an improved typhoon rainfall potential technique can be constructed.
Considering the fact that a typhoon’s spiral rainbands move constantly, half-hourly or hourly infrared data observed from geostationary weather satellites were used to calculate the revolving speed, which was subsequently used to predict the rainband movement over the next hour. After comparing the predicted rainfall potential with the rain gauge data of Taiwan’s small offshore islands, it was found that this new method can improve the typhoon’s accumulated rainfall by approximately 40% over the original TRaP method. Therefore, to produce a more accurate short-term typhoon rainfall forecast, it is very important to factor in the satellite-estimated storm rotation speed.
Abstract
This paper presents an evaluation study of a real-time fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) mesoscale ensemble prediction system in the Taiwan area during the 2003 mei-yu season. The ensemble system consists of 16 members that used the same nested domains of 45- and 15-km resolutions, but different model settings of the initial conditions (ICs), the cumulus parameterization scheme (CPS), and the microphysics scheme (MS). Verification of geopotential height, temperature, relative humidity, and winds in the 15-km grid shows that the members using the Kain–Fritsch CPS performed better than those using the Grell CPS, and those using the Central Weather Bureau (CWB) Nonhydrostatic Forecast System (NFS) ICs fared better than those using the CWB Global Forecast System (GFS) ICs. The members applying the mixed-phase MS generally exhibited the smallest errors among the four MSs. Precipitation verification shows that the members using the Grell CPS, in general, had higher equitable threat scores (ETSs) than those using the Kain–Fritsch CPS, that the members with the GFS ICs performed better than with the NFS ICs, and that the mixed-phase and Goddard MSs gave relatively high ETSs in the rainfall simulation. The bias scores show that, overall, all 16 members underforecasted rainfall. Comparisons of the ensemble means show that, on average, an ensemble mean, no matter how many members it contains, can produce better forecasts than an individual member. Among the three possible elements (IC, CPS, and MS) that can be varied to compose an ensemble, the ensemble that contains members with all three elements varying performed the best, while that with two elements varying was second best, and that with only one varying was the worst. Furthermore, the first choice for composing an ensemble is to use perturbed ICs, followed by the perturbed CPS, and then the perturbed MS.
Abstract
This paper presents an evaluation study of a real-time fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) mesoscale ensemble prediction system in the Taiwan area during the 2003 mei-yu season. The ensemble system consists of 16 members that used the same nested domains of 45- and 15-km resolutions, but different model settings of the initial conditions (ICs), the cumulus parameterization scheme (CPS), and the microphysics scheme (MS). Verification of geopotential height, temperature, relative humidity, and winds in the 15-km grid shows that the members using the Kain–Fritsch CPS performed better than those using the Grell CPS, and those using the Central Weather Bureau (CWB) Nonhydrostatic Forecast System (NFS) ICs fared better than those using the CWB Global Forecast System (GFS) ICs. The members applying the mixed-phase MS generally exhibited the smallest errors among the four MSs. Precipitation verification shows that the members using the Grell CPS, in general, had higher equitable threat scores (ETSs) than those using the Kain–Fritsch CPS, that the members with the GFS ICs performed better than with the NFS ICs, and that the mixed-phase and Goddard MSs gave relatively high ETSs in the rainfall simulation. The bias scores show that, overall, all 16 members underforecasted rainfall. Comparisons of the ensemble means show that, on average, an ensemble mean, no matter how many members it contains, can produce better forecasts than an individual member. Among the three possible elements (IC, CPS, and MS) that can be varied to compose an ensemble, the ensemble that contains members with all three elements varying performed the best, while that with two elements varying was second best, and that with only one varying was the worst. Furthermore, the first choice for composing an ensemble is to use perturbed ICs, followed by the perturbed CPS, and then the perturbed MS.
Abstract
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ~ 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7–8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals.
Abstract
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ~ 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7–8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals.