Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yibing Su x
  • Refine by Access: All Content x
Clear All Modify Search
Yibing Su
,
James A. Smith
, and
Gabriele Villarini

Abstract

Extreme rainfall from extratropical cyclones and the distinctive hydrology of the winter season both contribute to flood extremes in the Mid-Atlantic region. In this study, we examine extreme rainfall and flooding from a winter season extratropical cyclone that passed through the eastern United States on 24/25 February 2016. Extreme rainfall rates during the 24/25 February 2016 time period were produced by supercell thunderstorms; we identify supercells through local maxima in azimuthal shear fields computed from Doppler velocity measurements from WSR-88D radars. Rainfall rates approaching 250 mm h−1 from a long-lived supercell in New Jersey were measured by a Parsivel disdrometer. A distinctive element of the storm environment for the 24/25 February 2016 storm was elevated values of convective available potential energy (CAPE). We also examine the climatology of atmospheric rivers (ARs)—like the February 2016 storm—based on an identification and tracking algorithm that uses Twentieth Century Reanalysis fields for the 66-yr period from 1950 to 2015. Climatological analyses suggest that AR frequency is increasing over the Mid-Atlantic region. An increase in AR frequency, combined with increasing frequency of elevated CAPE during the winter season over the Mid-Atlantic region, could result in striking changes to the climatology of extreme floods.

Free access
Yibing Su
,
James A. Smith
, and
Gabriele Villarini

Abstract

The Lower Mississippi River has experienced a cluster of extreme floods during the past two decades. The Bonnet Carré spillway, which is located on the Mississippi River immediately upstream of New Orleans, has been operated 15 times since its completion in 1931, with 7 occurrences after 2008. In this study, we examine rainfall and atmospheric water balance components associated with Lower Mississippi River flooding in 2008, 2011, and 2015–19. We focus on multiple time scales—1, 3, 7, and 14 days—reflecting contributions from individual storm systems and the aggregate contributions from a sequence of storm systems. Atmospheric water balance variables—integrated water vapor flux (IVT) and precipitable water—are central to our assessment of the storm environment for Lower Mississippi flood events. We find anomalously large IVT corridors accompany the critical periods of heavy rainfall and are organized in southwest–northeast orientation over the Mississippi domain. Atmospheric rivers play an important role as agents of extremes in water vapor flux and rainfall. We conduct climatological analyses of IVT and precipitable water extremes across the four time scales using 40 years of North American Regional Reanalysis (NARR) fields from 1979 to 2018. We find significant increasing trends in both variables at all time scales. Increases in IVT especially cover large regions of the Mississippi domain. The findings point to increased vulnerability faced by the Mississippi flood control system in the current and future climate.

Free access