Search Results

You are looking at 1 - 10 of 50 items for

  • Author or Editor: Ying Li x
  • Refine by Access: All Content x
Clear All Modify Search
Ying Li and Ngar-Cheung Lau

Abstract

The dynamical mechanism for the late-winter teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) is examined using the output from a 2000-yr integration of a coupled general circulation model (GCM). The coupled model captures many salient features of the observed behavior of both ENSO and NAO, as well as their impact on the surface climate in late winter. Both the observational and model data indicate more occurrences of negative phase of NAO in late winter during El Niño events, and positive NAO in La Niña episodes.

The potential role of high-frequency transient eddies in the above teleconnection is diagnosed. During El Niño winters, the intensified transient disturbances along the equatorward-shifted North Pacific storm track extend their influences farther downstream. The eddy-induced negative height tendencies are found to be more coherent and stronger over North Atlantic than that over North Pacific. These negative height tendencies over the North Atlantic are coincident with the southern lobe of NAO, and thus favor more occurrences of negative NAO events.

During those El Niño winters with relatively strong SST warming in eastern equatorial Pacific, the eastward extension of eddy activity is reinforced by the enhanced near-surface baroclinicity over the subtropical eastern Pacific. This flow environment supports a stronger linkage between the Pacific and Atlantic storm tracks, and is more conducive to a negative NAO phase.

These model results are supported by a parallel analysis of various observational datasets. It is further demonstrated that these transient eddy effects can be reproduced in atmospheric GCM integrations subjected to ENSO-related SST forcing in the tropical Pacific.

Full access
Ying Li and Ngar-Cheung Lau

Abstract

The linkage between El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) through the stratospheric pathway is examined using a global coupled climate model [GFDL Climate Model version 3 (CM3)], with increased vertical resolution and extent in the stratosphere as compared to an earlier model [GFDL Climate Model version 2 (CM2)]. It is demonstrated that the relationship between ENSO and NAO is stronger in CM3 than in CM2.

It is found that ENSO plays an important role in modulating the frequency of occurrence of the stratospheric polar vortex anomalies through enhancement/attenuation of the amplitudes of zonal wavenumbers 1 and 2, especially in late winter. A higher frequency of weak (strong) stratospheric vortex events is simulated in CM3 during El Niño (La Niña) episodes.

The weak vortex events during El Niño winters are preceded by enhancement of the zonal wave-1 pattern and weakening of zonal wave-2 pattern. These modified tropospheric planetary waves propagate upward and then weaken the stratospheric polar vortex through eddy–mean flow interaction. The zonal-mean geopotential response in the stratosphere propagates downward and weakens the polar vortex throughout the troposphere.

The effects of planetary wave refraction in the upper troposphere on the zonally averaged circulation cells in the tropospheric meridional plane, and the linkage between the lower branches of these cells and the near-surface wind patterns, play an important role in the flow pattern over the region corresponding to the southern lobe of the NAO. Specifically, a negative annular mode and NAO response is discernible in weak stratospheric vortex events during El Niño. Conversely, the positive annular mode and NAO is evident in strong vortex events during La Niña.

Full access
Ying Li and Ngar-Cheung Lau

Abstract

The spatiotemporal evolution of various meteorological phenomena associated with El Niño–Southern Oscillation (ENSO) in the North Pacific–North American–North Atlantic sector is examined using both NCEP–NCAR reanalyses and output from a 2000-yr integration of a global coupled climate model. Particular attention is devoted to the implications of downstream eddy developments on the relationship between ENSO and the atmospheric circulation over the North Atlantic.

The El Niño–related persistent events are characterized by a strengthened Pacific subtropical jet stream and an equatorward-shifted storm track over the North Pacific. The wave packets that populate the storm tracks travel eastward through downstream development. The barotropic forcing of the embedded synoptic-scale eddies is conducive to the formation of a flow that resembles the negative phase of the North Atlantic Oscillation (NAO). The more frequent and higher persistence of those episodes during El Niño winters contribute to the prevalence of negative NAO conditions.

The above processes are further delineated by conducting a case study for the 2009/10 winter season, in which both El Niño and negative NAO conditions prevailed. It is illustrated that the frequent and intense surface cyclone development over North America and the western Atlantic throughout that winter are associated with upper-level troughs propagating across North America, which in turn are linked to downstream evolution of wave packets originating from the Pacific storm track.

Full access
Ying Li, Riyu Lu, and Buwen Dong

Abstract

In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle.

By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.

Full access
Ying Zhang, Zhanqing Li, and Andreas Macke

Abstract

This study investigates and accounts for the influence of various ice cloud parameters on the retrieval of the surface solar radiation budget (SSRB) from reflected flux at the top of the atmosphere (TOA). The optical properties of ice clouds depend on ice crystal shape, size distribution, water content, and the vertical profiles of geometric and microphysical structure. As a result, the relationship between the SSRB and TOA-reflected flux for an ice cloud atmosphere is more complex and differs from that for water cloud and cloudless atmospheres. The sensitivities of the relationship between the SSRB and TOA-reflected flux are examined with respect to various ice cloud parameters. Uncertainties in the retrieval of the SSRB due to inadequate knowledge of various ice cloud parameters are evaluated thoroughly. The uncertainty study is concerned with both pure ice clouds and multiphase clouds (ice cloud above water cloud). According to the magnitudes of errors in the SSRB retrieval caused by different input variables, parameterized correction terms were introduced. If the input variables are known accurately, errors in the retrieval of the SSRB under a wide range of ice cloud conditions are expected to diminish substantially, to less than 10 W m−2 for 91% of the simulated ice cloud cases. In comparison, the same accuracy may be attained for only 19% of the retrievals for the same ice cloud cases using the retrieval algorithm designed for non-ice-cloud conditions.

Full access
Ying Li and David W. J. Thompson

Abstract

The signatures of large-scale annular variability on the vertical structure of clouds and cloud radiative effects are examined in vertically resolved CloudSat and other satellite and reanalysis data products. The northern and southern “barotropic” annular modes (the NAM and SAM) have a complex vertical structure. Both are associated with a meridional dipole in clouds between subpolar and middle latitudes, but the sign of the anomalies changes between upper, middle, and lower tropospheric levels. In contrast, the northern and southern baroclinic annular modes have a much simpler vertical structure. Both are linked to same-signed anomalies in clouds extending throughout the troposphere at middle to high latitudes. The changes in cloud incidence associated with both the barotropic and baroclinic annular modes are consistent with dynamical forcing by the attendant changes in static stability and/or vertical motion. The results also provide the first observational estimates of the vertically resolved atmospheric cloud radiative effects associated with hemispheric-scale extratropical variability. In general, the anomalies in atmospheric cloud radiative effects associated with the annular modes peak in the middle to upper troposphere, and are consistent with the anomalous trapping of longwave radiation by variations in upper tropospheric clouds. The southern baroclinic annular mode gives rise to periodic behavior in longwave cloud radiative effects at the top of the atmosphere averaged over Southern Hemisphere midlatitudes.

Full access
Ying Li, Chenghao Wang, and Fengge Su

Abstract

Reliable simulations of historical and future climate are critical to assessing ecological and hydrological responses over the Third Pole region (TP; the area including the Himalaya–Hindu Kush mountain range and the Tibetan Plateau). In this study, we evaluate the historical and future temperature and precipitation simulations of 18 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) in southeastern TP (SETP) and the upstream area of the Amu Darya and Syr Darya (UAS) regions, two typical TP subregions dominated by the Indian summer monsoon system and westerlies, respectively. Comparison against station observations suggests that CMIP6 models generally capture the intra-annual variability and spatial pattern of historical climate over both subregions. However, the wetting and cold biases observed in CMIP5 still persist in CMIP6; annual temperature is underestimated by most models and annual precipitation is overestimated by all models. Multimodel average cold biases in SETP and UAS are 1.18° and 0.32°C, respectively, and wet biases in SETP and UAS are 119% and 46%, respectively. We further analyze climate projections under SSP1–2.6, SSP2–4.5, and SSP5–8.5 scenarios. Both SETP and UAS subregions are projected to experience significant warming in 2015–2100, with warming trends 34%–42% and 40%–50% higher than the global trend, respectively. Model projections suggest that the warming trend will slow down under SSP1–2.6 and SSP2–4.5 but further intensify under SSP5–8.5 in 2050–2100. Monsoon-dominated SETP is projected to experience a significant wetting trend stronger than UAS over the entire future period, especially in summer (cf. winter in westerlies-dominated UAS). Concurrently, a significant drying trend in summer is found in UAS during 2050–2100 under SSP5–8.5, suggesting the intensified uneven distributions of seasonal precipitation based on projections.

Restricted access
Yueting Gong, Ying Li, and Da-Lin Zhang

Abstract

Tropical cyclones (TCs) tend to change translation direction and speed when moving across Taiwan’s Central Mountain Range (CMR), which makes forecasting of landfalling points a challenging task. This study examines the statistical characteristics of unusual TC tracks around Taiwan Island during the 66-yr period of 1949–2014. Results show that 1) about 10% more TCs were deflected to the right than to the left as they moved across the CMR, but with more occurrences of the latter on Taiwan’s eastern coast and southern strait; 2) TCs around Taiwan Island moved slower than the average speed over the western North Pacific Ocean but then exhibited anomalous acceleration along Taiwan’s eastern coast and anomalous deceleration over the southern Taiwan Strait; 3) about 33% of TCs passing the island were accompanied by terrain-induced secondary low pressure centers (SCs), more favored in the northwestern, southwestern, and southeastern quadrants, with the TC–SC separation distance varying from 33 to 643 km; 4) about 36% of landfalling TCs experienced discontinuous tracks, with an average separation distance of 141 km at the time when TC centers were replaced by SCs, and smaller Froude numbers than those associated with continuous-tracking TCs; and 5) a total of 12 TCs had looping movements near Taiwan Island, most of which were accompanied by SCs on their southern or western sides. Results also indicate that a stronger SC was likely to take place when a stronger TC approached the CMR with a shorter separation distance and that a weaker SC was likely to take place when a weaker TC approached the CMR with a longer separation distance.

Full access
David W. J. Thompson and Ying Li

Abstract

Large-scale variability in the Northern Hemisphere (NH) circulation can be viewed in the context of three primary types of structures: 1) teleconnection patterns, 2) a barotropic annular mode, and 3) a baroclinic annular mode. The barotropic annular mode corresponds to the northern annular mode (NAM) and has been examined extensively in previous research. Here the authors examine the spatial structure and time-dependent behavior of the NH baroclinic annular mode (NBAM).

The NAM and NBAM have very different signatures in large-scale NH climate variability. The NAM emerges as the leading principal component (PC) time series of the zonal-mean kinetic energy. It dominates the variance in the wave fluxes of momentum, projects weakly onto the eddy kinetic energy and wave fluxes of heat, and can be modeled as Gaussian red noise with a time scale of ~10 days. In contrast, the NBAM emerges as the leading PC time series of the eddy kinetic energy. It is most clearly identified when the planetary-scale waves are filtered from the data, dominates the variance in the synoptic-scale eddy kinetic energy and wave fluxes of heat, and has a relatively weak signature in the zonal-mean kinetic energy and the wave fluxes of momentum. The NBAM is marked by weak but significant enhanced spectral power on time scales of ~20–25 days.

The NBAM is remarkably similar to its Southern Hemisphere counterpart despite the pronounced interhemispheric differences in orography and land–sea contrasts.

Full access
Nannan Qin, Da-Lin Zhang, and Ying Li

Abstract

It is well known that hurricane intensification is often accompanied by continuous contraction of the radius of maximum wind (RMW) and eyewall size. However, a few recent studies have shown rapid and then slow contraction of the RMW/eyewall size prior to the onset and during the early stages of rapid intensification (RI) of hurricanes, respectively, but a steady state in the RMW (S-RMW) and eyewall size during the later stages of RI. In this study, a statistical analysis of S-RMWs associated with rapidly intensifying hurricanes is performed using the extended best-track dataset during 1990–2014 in order to examine how frequently, and at what intensity and size, the S-RMW structure tends to occur. Results show that about 53% of the 139 RI events of 24-h duration associated with 55 rapidly intensifying hurricanes exhibit S-RMWs, and that the percentage of the S-RMW events increases to 69% when RI events are evaluated at 12-h intervals, based on a new RI rate definition of 10 m s−1 (12 h)−1; both results satisfy the Student’s t tests with confidence levels of over 95%. In general, S-RMWs tend to appear more frequently in more intense storms and when their RMWs are contracted to less than 50 km. This work suggests a new fruitful research area in studying the RI of hurricanes with S-RMWs.

Full access