Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Yipeng Guo x
  • All content x
Clear All Modify Search
Yi-Peng Guo and Zhe-Min Tan

Abstract

This study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification. A positive wind–sea surface temperature (SST)–precipitation feedback was found to facilitate the ability of the signal of the EOF-1 to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warm the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, strengthens the monsoon trough, and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.

Open access
Yi-Peng Guo and Zhe-Min Tan

Abstract

El Niño–Southern Oscillation (ENSO), which features an equatorial quasi-symmetric sea surface temperature anomaly (SSTA), is related to both the symmetric and asymmetric components of the Hadley circulation (HC) variability. However, the mechanisms for such a nonlinear HC–ENSO relationship are still unclear. Using 36-yr monthly reanalysis datasets, this study shows that the month-to-month HC variability is dominated by two principal modes, the asymmetric mode (AM) and symmetric mode (SM), both of which are highly correlated with ENSO variability. Furthermore, the relationship between the HC principal modes and the ENSO SSTA is modulated by the western Pacific SST annual cycle. When the zonal mean western Pacific SST peaks off (on) the equator, the ENSO SSTA leads to the AM (SM) of HC variability. This is because the zonal mean western Pacific SST peak provides a warmer background favorable for the SSTA to stimulate convection, indicating the important role of the combined effect of the SST annual cycle and the ENSO SSTA in affecting the HC variability. Importantly, the western Pacific SST annual cycle has no such modulation effect during central Pacific El Niño or La Niña events. The results have important implications for simulating and predicting the climatic impacts of ENSO and HC variability.

Open access
Yi-Peng Guo and Zhe-Min Tan

Abstract

The variation in the interannual relationship between the boreal winter Hadley circulation (HC) and El Niño–Southern Oscillation (ENSO) during 1948–2014 is investigated. The interannual variability of the HC is dominated by two principal modes: the equatorial asymmetric mode (AM) and the equatorial symmetric mode (SM). The AM of the HC during ENSO events mainly results from a combined effect of the ENSO sea surface temperature (SST) anomalies and the climatological background SST over the South Pacific convergence zone. Comparatively, the SM shows a steady and statistically significant relationship with ENSO; however, the interannual relationship between the AM and ENSO is strengthened during the mid-1970s, which leads to a HC regime change—that is, the interannual pulse of the HC intensity and its response to ENSO are stronger after the mid-1970s than before. The long-term warming trend of the tropical western Pacific since the 1950s and the increased ENSO amplitude play vital roles in the HC regime change. Although the tropical eastern Pacific also experienced a long-term warming trend, it has little influence on the HC regime change due to the climatologically cold background SST over the cold tongue region.

Open access
Dingzhu Hu, Wenshou Tian, Zhaoyong Guan, Yipeng Guo, and Sandip Dhomse

Abstract

The zonal structure of trends in the tropical tropopause layer during 1979–2014 is investigated by using reanalysis datasets and chemistry–climate model simulations. The analysis herein reveals that the tropical cold-point tropopause temperature (CPTT) trends during 1979–2014 are zonally asymmetric; that is, over the tropical central and eastern Pacific (CEP; 20°S–20°N, 160°E–100°W), the CPTT shows an increasing trend of 0.22 K decade−1, whereas over the rest of the tropical regions (non-CEP regions) the CPTT shows a decreasing trend of −0.08 K decade−1. Model simulations suggest that this zonal asymmetry in the tropical CPTT trends can be partly attributed to Walker circulation (WC) changes induced by zonally asymmetric changes of the sea surface temperatures (SSTs). The increasing (decreasing) SSTs over the western Pacific (CEP) result in a larger zonal gradient in sea level pressure over the tropical Pacific and intensified surface easterlies. The increased pressure gradient leads to enhanced convection over the Indo-Pacific warm pool and weakened convection over the CEP, facilitating a stronger WC. The downward branch of the intensified WC induces a dynamical warming over the CEP and the upward branch of the intensified WC induces a dynamical cooling over the non-CEP regions below 150 hPa. The significant warming in the upper troposphere and lower stratosphere (UTLS) caused by the WC descending and wave activity changes in the UTLS over the CEP shifts the cold-point tropopause height to a higher level, while the radiative effects of greenhouse gases, ozone, and water vapor changes in the UTLS make less important contributions to the trend of the tropical CPTT than SST changes.

Full access
Dingzhu Hu, Yi-Peng Guo, Zhe-Min Tan, and Zhaoyong Guan

Abstract

This study investigates the interannual relationship and the dynamical linkage between the boreal spring Arctic Oscillation (AO) and the Northern Hemisphere Hadley circulation extent (HCE). The spring AO is positively correlated with the HCE, with one standard positive deviation of the AO index corresponding to approximately 0.42° latitude poleward shift of the HCE. The interaction between the planetary wave and the zonal winds over the subtropics results in an anomalous eddy momentum flux divergence, which shifts the HCE poleward. The AO related transient eddy momentum flux divergence makes nearly 2 times larger contributions than those of the stationary component to the HCE change. The increased equatorward transient wave flux over the subtropics is possibly related to the larger meridional gradient of the transient wave refractive index there. The AO positive phase corresponds to an enhanced planetary wave propagation from the midlatitude Atlantic Ocean to the subtropics, which resembles the North Atlantic Oscillation pattern. The autumn and winter AO–HCE relationship is similar to that during spring, while summer has the weakest relationship, which could be mainly attributed to the far poleward extension of the climatological HCE during summer.

Open access
Yipeng Guo, Jianping Li, Juan Feng, Fei Xie, Cheng Sun, and Jiayu Zheng

Abstract

Previous studies show that the first principal mode of the variability of the seasonal mean Hadley circulation (HC) is an equatorial asymmetric mode (AM) with long-term trend. This study demonstrates that the variability of the boreal autumn [September–November (SON)] HC is also dominated by an AM, but with multidecadal variability. The SON AM has ascending and descending branches located at approximately 20°N and 20°S, respectively, and explains about 40% of the total variance. Further analysis reveals that the AM is closely linked to the Atlantic multidecadal oscillation (AMO), which is associated with a large cross-equatorial sea surface temperature (SST) gradient and sea level pressure (SLP) gradient. The cross-equatorial thermal contrast further induces an equatorial asymmetric HC anomaly. Numerical simulations conducted on an atmospheric general circulation model also suggest that AMO-associated SST anomalies can also induce a cross-equatorial SLP gradient and anomalous vertical shear of the meridional wind at the equator, both of which indicate asymmetric HC anomaly. Therefore, the AM of the variability of the boreal autumn HC has close links to the AMO. Further analysis demonstrates that the AMO in SON has a closer relationship with AM than those in the other seasons. A possible reason is that the AMO-associated zonal mean SST anomaly in the tropics has differences among the four seasons, which leads to different atmospheric circulation responses.

The AM in SON has inversed impacts on the tropical precipitation, suggesting that the precipitation difference between the northern and southern tropics has multidecadal variability.

Full access
Xiangbo Feng, Nicholas P. Klingaman, Kevin I. Hodges, and Yi-Peng Guo

Abstract

The performance of the Met Office Global Seasonal Forecast System (GloSea5-GC2) for tropical cyclone (TC) frequency for the western North Pacific (WNP) in July–October is evaluated, using 23 years of ensemble forecasts (1993–2015). Compared to observations, GloSea5 overpredicts the climatological TC frequency in the eastern WNP and underpredicts it in the western and northern WNP. These biases are associated with an El Niño–type bias in TC-related environmental conditions (e.g., low-level convergence and steering flow), which encourages too many TCs to form throughout the tropical Pacific and slows TC propagation speed. For interannual TC frequency variability, GloSea5 overestimates the observed negative TC–ENSO teleconnection in the western and northern WNP, associated with an eastward shift in the ENSO teleconnection to environmental conditions. Consequently, GloSea5 fails to predict interannual TC variability in the northeast WNP (south of Japan); performance is higher in the southwest WNP (e.g., the South China Sea) where the sign of the TC–ENSO teleconnection is correct. This study suggests the need to reduce biases in environmental conditions and associated ENSO teleconnections in GloSea5 to improve the TC prediction performance in the NWP.

Open access
Juan Feng, Jianping Li, Feifei Jin, Zhengyu Liu, Xing Nan, and Yipeng Guo

Abstract

The impacts of different meridional structures of tropical sea surface temperature (SST) on the Hadley circulation (HC) in the annual mean are investigated during the period 1948–2013. By decomposing the variations in SST and the HC into two components—that is, the equatorially asymmetric (SEA for SST, and HEA for HC) and the equatorially symmetric (SES for SST, and HES for HC) parts—it is shown that the long-term variability in SEA and SES captures well the temporal variations in equatorially asymmetric and symmetric variations in SST. The variation in HEA is closely linked to that of SEA, and the variation in HES is connected with that of SES. However, the response of HEA to a given amplitude variation in SEA is stronger (by ~5 times) than that of HES to the same amplitude variation in SES. This point is further verified by theoretical and numerical models, indicating that the meridional structure of SST plays a crucial role in determining the anomalies in HC. This result may explain why the principal mode of HC is dominated by an equatorially asymmetric mode in its long-term variability.

Full access