Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: Yongjie Huang x
- Refine by Access: All Content x
Abstract
Water vapor sources and transport paths associated with torrential rains are very important to research and forecasts. This study investigates the main moisture sources and transport paths related to torrential rainfall events in the Sichuan basin of China, which is located east of the Tibetan Plateau, using a Lagrangian flexible particle dispersion model (FLEXPART). Based on the analysis of the torrential rainfall distribution during 2009–13, four study areas are selected in the basin. Particles that have a great contribution to the torrential rainfall events within the four study areas are traced back for 10 days, and a quantitative analysis of the contributions from various moisture sources to the torrential rainfall events is also conducted. The results indicate that a large number of target particles start at the Arabian Sea and the Bay of Bengal, land on the Indo-China Peninsula, and finally reach the study areas. This is an important moisture transport path for the torrential rainfall events within the four study areas. Another important path is from the neighborhood of the Sichuan basin. The total moisture supplies from all examined moisture sources within the whole atmospheric layer account for more than 90% of precipitation within the study areas. There are two major moisture sources, the Sichuan basin and the Bay of Bengal, and the South China Sea could be another important moisture source region for the torrential rains in the northeastern Sichuan basin.
Abstract
Water vapor sources and transport paths associated with torrential rains are very important to research and forecasts. This study investigates the main moisture sources and transport paths related to torrential rainfall events in the Sichuan basin of China, which is located east of the Tibetan Plateau, using a Lagrangian flexible particle dispersion model (FLEXPART). Based on the analysis of the torrential rainfall distribution during 2009–13, four study areas are selected in the basin. Particles that have a great contribution to the torrential rainfall events within the four study areas are traced back for 10 days, and a quantitative analysis of the contributions from various moisture sources to the torrential rainfall events is also conducted. The results indicate that a large number of target particles start at the Arabian Sea and the Bay of Bengal, land on the Indo-China Peninsula, and finally reach the study areas. This is an important moisture transport path for the torrential rainfall events within the four study areas. Another important path is from the neighborhood of the Sichuan basin. The total moisture supplies from all examined moisture sources within the whole atmospheric layer account for more than 90% of precipitation within the study areas. There are two major moisture sources, the Sichuan basin and the Bay of Bengal, and the South China Sea could be another important moisture source region for the torrential rains in the northeastern Sichuan basin.
Abstract
Idealized simulations are conducted using the Cloud Model version 1 (CM1) to explore the mechanism of tropical cyclone (TC) genesis from a preexisting midtropospheric vortex that forms in radiative–convective equilibrium. With lower-tropospheric air approaching near saturation during TC genesis, convective cells become stronger, along with the intensifying updrafts and downdrafts and the larger area coverage of updrafts relative to downdrafts. Consequently, the low-level vertical mass flux increases, inducing vorticity amplification above the boundary layer. Of interest is that while surface cold pools help organize lower-tropospheric updrafts, genesis still proceeds, only slightly delayed, if subcloud evaporation cooling and cold pool intensity are drastically reduced. More detrimental is the disruption of near saturation through the introduction of weak vertical wind shear. The lower-tropospheric dry air suppresses the strengthening of convection, leading to weaker upward mass flux and much slower near-surface vortex spinup. We also find that surface spinup is similarly inhibited by decreasing surface drag despite the existence of a nearly saturated column, whereas larger drag accelerates spinup. Increased vorticity above the boundary layer is followed by the emergence of a horizontal pressure gradient through the depth of the boundary layer. Then the corresponding convergence resulting from the gradient imbalance in the frictional boundary layer causes vorticity amplification near the surface. It is suggested that near saturation in the lower troposphere is critical for increasing the mass flux and vorticity just above the boundary layer, but it is necessary yet insufficient because the spinup is strongly governed by boundary layer dynamics.
Abstract
Idealized simulations are conducted using the Cloud Model version 1 (CM1) to explore the mechanism of tropical cyclone (TC) genesis from a preexisting midtropospheric vortex that forms in radiative–convective equilibrium. With lower-tropospheric air approaching near saturation during TC genesis, convective cells become stronger, along with the intensifying updrafts and downdrafts and the larger area coverage of updrafts relative to downdrafts. Consequently, the low-level vertical mass flux increases, inducing vorticity amplification above the boundary layer. Of interest is that while surface cold pools help organize lower-tropospheric updrafts, genesis still proceeds, only slightly delayed, if subcloud evaporation cooling and cold pool intensity are drastically reduced. More detrimental is the disruption of near saturation through the introduction of weak vertical wind shear. The lower-tropospheric dry air suppresses the strengthening of convection, leading to weaker upward mass flux and much slower near-surface vortex spinup. We also find that surface spinup is similarly inhibited by decreasing surface drag despite the existence of a nearly saturated column, whereas larger drag accelerates spinup. Increased vorticity above the boundary layer is followed by the emergence of a horizontal pressure gradient through the depth of the boundary layer. Then the corresponding convergence resulting from the gradient imbalance in the frictional boundary layer causes vorticity amplification near the surface. It is suggested that near saturation in the lower troposphere is critical for increasing the mass flux and vorticity just above the boundary layer, but it is necessary yet insufficient because the spinup is strongly governed by boundary layer dynamics.
Abstract
A set of kinetic energy (KE) budget equations associated with four horizontal flow components was derived to study the KE characteristics during the genesis of Tropical Cyclone (TC) Durian (2001) in the South China Sea using numerical simulation data. The genesis process was divided into three stages: the monsoon trough stage (stage 1), the midlevel mesoscale convective vortex (MCV) stage (stage 2), and the establishment stage of the TC vortex (stage 3). Analysis showed that the KE of the symmetric rotational flow (SRF) was the largest and kept increasing, especially in stages 2 and 3, representing the symmetrization process during TC genesis. The KE of the SRF was mainly converted from the KE of the symmetric divergent flow (SDF), largely transformed from the available potential energy (APE). It was found that vortical hot towers (VHTs) emerged abundantly, aggregated, and merged within the MCV region in stages 1 and 2. From the energy budget perspective, massive moist-convection-produced latent heat was concentrated and accumulated within the MCV region, especially in stage 2, and further warmed the atmosphere, benefiting the accumulation of APE and the transformation from APE to KE. As a result, the midlevel circulation (or MCV) grew strong rapidly. In stage 3, the intensity and number of VHTs both decreased. However, affected by increasing lower-level inward radial wind, latent heat released by the organized convection, instead of disorganized VHTs in the first two stages, continuously contributed to the strengthening of the surface TC circulation as well as the warm core.
Abstract
A set of kinetic energy (KE) budget equations associated with four horizontal flow components was derived to study the KE characteristics during the genesis of Tropical Cyclone (TC) Durian (2001) in the South China Sea using numerical simulation data. The genesis process was divided into three stages: the monsoon trough stage (stage 1), the midlevel mesoscale convective vortex (MCV) stage (stage 2), and the establishment stage of the TC vortex (stage 3). Analysis showed that the KE of the symmetric rotational flow (SRF) was the largest and kept increasing, especially in stages 2 and 3, representing the symmetrization process during TC genesis. The KE of the SRF was mainly converted from the KE of the symmetric divergent flow (SDF), largely transformed from the available potential energy (APE). It was found that vortical hot towers (VHTs) emerged abundantly, aggregated, and merged within the MCV region in stages 1 and 2. From the energy budget perspective, massive moist-convection-produced latent heat was concentrated and accumulated within the MCV region, especially in stage 2, and further warmed the atmosphere, benefiting the accumulation of APE and the transformation from APE to KE. As a result, the midlevel circulation (or MCV) grew strong rapidly. In stage 3, the intensity and number of VHTs both decreased. However, affected by increasing lower-level inward radial wind, latent heat released by the organized convection, instead of disorganized VHTs in the first two stages, continuously contributed to the strengthening of the surface TC circulation as well as the warm core.
Abstract
Phased-array radar (PAR) technology can potentially provide high-quality clear-air radial velocity observations at a high spatiotemporal resolution, usually ∼1 min or less. These observations are hypothesized to partially fill the gaps in current operational observing systems with relatively coarse-resolution surface mesonet observations and the lack of high-resolution upper-air observations especially in planetary boundary layer. In this study, observing system simulation experiments are conducted to investigate the potential value of assimilating PAR observations of clear-air radial velocity to improve the forecast of convection initiation (CI) along small-scale boundary layer convergence zones. Both surface-based and elevated CIs driven by meso-γ-scale boundary layer convergence are tested. An ensemble Kalman filter method is used to assimilate synthetic surface mesonet observations and PAR clear-air radial velocity observations. Results show that assimilating only surface mesonet observations fails to predict either surface-based or elevated CI processes. Assimilating clear-air radial velocity observations in addition to surface mesonet observations can capture both surface-based and elevated CI processes successfully. Such an improvement benefits from the better analyses of boundary layer convergence, resulting from the assimilation of clear-air radial velocity observations. Additional improvement is observed with more frequent assimilation. Assimilating clear-air radial velocity observations only from the one radar results in analysis biases of cross-beam winds and CI location biases, and assimilating additional radial velocity observations from the second radar at an appropriate position can reduce these biases while sacrificing the CI timing. These results suggest the potential of assimilating clear-air radial velocity observations from PAR to improve the forecast of CI processes along boundary layer convergence zones.
Abstract
Phased-array radar (PAR) technology can potentially provide high-quality clear-air radial velocity observations at a high spatiotemporal resolution, usually ∼1 min or less. These observations are hypothesized to partially fill the gaps in current operational observing systems with relatively coarse-resolution surface mesonet observations and the lack of high-resolution upper-air observations especially in planetary boundary layer. In this study, observing system simulation experiments are conducted to investigate the potential value of assimilating PAR observations of clear-air radial velocity to improve the forecast of convection initiation (CI) along small-scale boundary layer convergence zones. Both surface-based and elevated CIs driven by meso-γ-scale boundary layer convergence are tested. An ensemble Kalman filter method is used to assimilate synthetic surface mesonet observations and PAR clear-air radial velocity observations. Results show that assimilating only surface mesonet observations fails to predict either surface-based or elevated CI processes. Assimilating clear-air radial velocity observations in addition to surface mesonet observations can capture both surface-based and elevated CI processes successfully. Such an improvement benefits from the better analyses of boundary layer convergence, resulting from the assimilation of clear-air radial velocity observations. Additional improvement is observed with more frequent assimilation. Assimilating clear-air radial velocity observations only from the one radar results in analysis biases of cross-beam winds and CI location biases, and assimilating additional radial velocity observations from the second radar at an appropriate position can reduce these biases while sacrificing the CI timing. These results suggest the potential of assimilating clear-air radial velocity observations from PAR to improve the forecast of CI processes along boundary layer convergence zones.
Abstract
In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño–decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean–western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.
Abstract
In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño–decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean–western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.
Abstract
Phased-array radar (PAR) technology offers the flexibility of sampling the storm and clear-air regions with different update times. As such, the radial velocity from clear-air regions, typically with a lower signal-to-noise ratio, can be measured more accurately. In this work, observing system simulation experiments are conducted to explore the potential value of assimilating clear-air radial velocity observations to improve numerical prediction of supercell thunderstorms. Synthetic PAR observations of a splitting supercell are assimilated at different life cycle stages using an ensemble Kalman filter. Results show that assimilating environmental clear-air radial velocity can reduce wind errors in the near-storm environment and within the precipitation region. Improvements in the forecast are seen at different stages, especially for the forecast after 30 min. After assimilating clear-air radial velocity observations, the probabilities of updraft helicity and precipitation within the corresponding swaths of the truth simulation increase up to 30%–40%. Additional diagnostics suggest that the more accurate track forecast, stronger vertical motion, and better-maintained supercell can be attributed to the better analysis and prediction of the mean environmental winds and linear and nonlinear dynamic forces. Consequently, assimilating clear-air radial velocity produces accurate storm structure (rotating updrafts), updraft size, and storm track, and improves the surface accumulated precipitation forecast. The performance of forecasts with a higher frequency of assimilating clear-air radial velocity does not show systematic improvement. These results highlight the potential of assimilating clear-air radial velocity observations to improve numerical weather prediction forecasts of supercell thunderstorms.
Abstract
Phased-array radar (PAR) technology offers the flexibility of sampling the storm and clear-air regions with different update times. As such, the radial velocity from clear-air regions, typically with a lower signal-to-noise ratio, can be measured more accurately. In this work, observing system simulation experiments are conducted to explore the potential value of assimilating clear-air radial velocity observations to improve numerical prediction of supercell thunderstorms. Synthetic PAR observations of a splitting supercell are assimilated at different life cycle stages using an ensemble Kalman filter. Results show that assimilating environmental clear-air radial velocity can reduce wind errors in the near-storm environment and within the precipitation region. Improvements in the forecast are seen at different stages, especially for the forecast after 30 min. After assimilating clear-air radial velocity observations, the probabilities of updraft helicity and precipitation within the corresponding swaths of the truth simulation increase up to 30%–40%. Additional diagnostics suggest that the more accurate track forecast, stronger vertical motion, and better-maintained supercell can be attributed to the better analysis and prediction of the mean environmental winds and linear and nonlinear dynamic forces. Consequently, assimilating clear-air radial velocity produces accurate storm structure (rotating updrafts), updraft size, and storm track, and improves the surface accumulated precipitation forecast. The performance of forecasts with a higher frequency of assimilating clear-air radial velocity does not show systematic improvement. These results highlight the potential of assimilating clear-air radial velocity observations to improve numerical weather prediction forecasts of supercell thunderstorms.
Abstract
A Lagrangian model—the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)—is used to quantify changes in moisture sources and paths for precipitation over North China’s Henan Province associated with tropical cyclone (TC) over the western North Pacific (WNP) during July–August of 1979–2021. During TC-active periods, an anomalous cyclone over the WNP enhances southeasterly and reduces southwesterly moisture transport to Henan. Accordingly, compared to TC-inactive periods, moisture contributions from the Pacific Ocean (PO), eastern China (EC), and the local area (Local) are significantly enhanced by 48.32% (16.73% versus 11.28%), 20.42% (9.44% versus 7.84%), and 2.89% (4.91% versus 4.77%), respectively, while moisture contributions from the Indian Ocean (IO), Southwestern China (SWC), Eurasia (EA), and the South China Sea (SCS) are significantly reduced by −31.90% (8.61% versus 12.64%), −16.27% (4.60% versus 5.50%), −8.81% (19.10% versus 20.95%), and −6.92% (12.18% versus 13.09%). Furthermore, the moisture transport for a catastrophic extreme rainfall event during 17–22 July (“21⋅7” event) influenced by Typhoon Infa is investigated. Compared to the mean state during TC-active periods, the moisture contribution from the PO was substantially increased by 126.32% (37.87% versus 16.73%), while that from IO significantly decreased by −98.26% (0.15% versus 8.61%) during the “21⋅7” event. Analyses with a bootstrap resampling method show that moisture contributions from the PO fall outside the +6σ range, for both the TC-active and TC-inactive probability distributions. Thus, the “21⋅7” event is rare and extreme in terms of the moisture contribution from the PO, with the occurrence probability being less than 1 in 1 million times.
Significance Statement
Henan, one of the most populated provinces in China, experienced a catastrophic extreme precipitation event in July 2021 (the “21⋅7” event), coinciding with the activity of a tropical cyclone (TC) over the western North Pacific, which helps establish the moisture channel. Using a Lagrangian model, we provide a better understanding of how moisture transport changes associated with TC for the mean state of 1979–2021, and reveal how extreme is the moisture transport for the “21⋅7” event with the bootstrap technique. It is found that during active TC periods, the moisture contribution from the Pacific Ocean (the Indian Ocean) is significantly enhanced (reduced). For every 1 000 000 six-day events, less than one instance like the “21⋅7” event should be expected.
Abstract
A Lagrangian model—the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)—is used to quantify changes in moisture sources and paths for precipitation over North China’s Henan Province associated with tropical cyclone (TC) over the western North Pacific (WNP) during July–August of 1979–2021. During TC-active periods, an anomalous cyclone over the WNP enhances southeasterly and reduces southwesterly moisture transport to Henan. Accordingly, compared to TC-inactive periods, moisture contributions from the Pacific Ocean (PO), eastern China (EC), and the local area (Local) are significantly enhanced by 48.32% (16.73% versus 11.28%), 20.42% (9.44% versus 7.84%), and 2.89% (4.91% versus 4.77%), respectively, while moisture contributions from the Indian Ocean (IO), Southwestern China (SWC), Eurasia (EA), and the South China Sea (SCS) are significantly reduced by −31.90% (8.61% versus 12.64%), −16.27% (4.60% versus 5.50%), −8.81% (19.10% versus 20.95%), and −6.92% (12.18% versus 13.09%). Furthermore, the moisture transport for a catastrophic extreme rainfall event during 17–22 July (“21⋅7” event) influenced by Typhoon Infa is investigated. Compared to the mean state during TC-active periods, the moisture contribution from the PO was substantially increased by 126.32% (37.87% versus 16.73%), while that from IO significantly decreased by −98.26% (0.15% versus 8.61%) during the “21⋅7” event. Analyses with a bootstrap resampling method show that moisture contributions from the PO fall outside the +6σ range, for both the TC-active and TC-inactive probability distributions. Thus, the “21⋅7” event is rare and extreme in terms of the moisture contribution from the PO, with the occurrence probability being less than 1 in 1 million times.
Significance Statement
Henan, one of the most populated provinces in China, experienced a catastrophic extreme precipitation event in July 2021 (the “21⋅7” event), coinciding with the activity of a tropical cyclone (TC) over the western North Pacific, which helps establish the moisture channel. Using a Lagrangian model, we provide a better understanding of how moisture transport changes associated with TC for the mean state of 1979–2021, and reveal how extreme is the moisture transport for the “21⋅7” event with the bootstrap technique. It is found that during active TC periods, the moisture contribution from the Pacific Ocean (the Indian Ocean) is significantly enhanced (reduced). For every 1 000 000 six-day events, less than one instance like the “21⋅7” event should be expected.
Abstract
High ice water content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana, in 2015. Observations from in situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter (MMD), ice water content (IWC), and total number concentration (N t ) for particles with maximum dimension (D max) > 55 μm vary with environmental conditions, temperature (T), and convective properties such as vertical velocity (w), MCS age, distance away from convective peak (L), and surface characteristics. IWC is significantly correlated with w, whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation, and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m−3, but decreases with IWC when IWC > 0.5 g m−3 for −15° ≤ T ≤ −5°C. Trends also depend on environmental conditions, such as the presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWCs decrease with increasing L at lower T. The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T. The strength of correlation between IWC and N t increases as T decreases.
Abstract
High ice water content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana, in 2015. Observations from in situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter (MMD), ice water content (IWC), and total number concentration (N t ) for particles with maximum dimension (D max) > 55 μm vary with environmental conditions, temperature (T), and convective properties such as vertical velocity (w), MCS age, distance away from convective peak (L), and surface characteristics. IWC is significantly correlated with w, whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation, and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m−3, but decreases with IWC when IWC > 0.5 g m−3 for −15° ≤ T ≤ −5°C. Trends also depend on environmental conditions, such as the presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWCs decrease with increasing L at lower T. The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T. The strength of correlation between IWC and N t increases as T decreases.
Abstract
Regional climate dynamical downscaling at convection-permitting resolutions is now practical and has the potential to significantly improve over coarser-resolution simulations, but the former is not necessarily free of systematic biases. The evaluation and optimization of model configurations are therefore important. Twelve simulations at a grid spacing of 3 km using the WRF Model with different microphysics, planetary boundary layer (PBL), and land surface model (LSM) schemes are performed over the Peruvian central Andes during the austral summer, a region with particularly complex terrain. The simulated precipitation is evaluated using rain gauge data and three gridded precipitation datasets. All simulations correctly capture four precipitation hotspots associated with prevailing winds and terrain features along the east slope of the Andes, though they generally overestimate the precipitation intensity. The simulation using Thompson microphysics, Asymmetric Convection Model version 2 (ACM2) PBL, and Noah LSM schemes has the smallest bias. The simulated precipitation is most sensitive to PBL, followed by microphysics, and least sensitive to LSM schemes. The simulated precipitation is generally stronger in simulations using the YSU rather than the MYNN and ACM2 schemes. All simulations successfully capture the diurnal precipitation peak time mainly in the afternoon over the Peruvian central Andes and in the early morning along the east slope. However, there are significant differences over the western Amazon basin, where the precipitation peak occurs primarily in the late afternoon. Simulations using YSU exhibit a 4–8-h delay in the precipitation peak over the western Amazon basin, consistent with their stronger and more persistent low-level jets. These results provide guidance on the optimal configuration of a dynamical downscaling of global climate projections for the Peruvian central Andes.
Abstract
Regional climate dynamical downscaling at convection-permitting resolutions is now practical and has the potential to significantly improve over coarser-resolution simulations, but the former is not necessarily free of systematic biases. The evaluation and optimization of model configurations are therefore important. Twelve simulations at a grid spacing of 3 km using the WRF Model with different microphysics, planetary boundary layer (PBL), and land surface model (LSM) schemes are performed over the Peruvian central Andes during the austral summer, a region with particularly complex terrain. The simulated precipitation is evaluated using rain gauge data and three gridded precipitation datasets. All simulations correctly capture four precipitation hotspots associated with prevailing winds and terrain features along the east slope of the Andes, though they generally overestimate the precipitation intensity. The simulation using Thompson microphysics, Asymmetric Convection Model version 2 (ACM2) PBL, and Noah LSM schemes has the smallest bias. The simulated precipitation is most sensitive to PBL, followed by microphysics, and least sensitive to LSM schemes. The simulated precipitation is generally stronger in simulations using the YSU rather than the MYNN and ACM2 schemes. All simulations successfully capture the diurnal precipitation peak time mainly in the afternoon over the Peruvian central Andes and in the early morning along the east slope. However, there are significant differences over the western Amazon basin, where the precipitation peak occurs primarily in the late afternoon. Simulations using YSU exhibit a 4–8-h delay in the precipitation peak over the western Amazon basin, consistent with their stronger and more persistent low-level jets. These results provide guidance on the optimal configuration of a dynamical downscaling of global climate projections for the Peruvian central Andes.
Abstract
A new method that automatically determines the modality of an observed particle size distribution (PSD) and the representation of each mode as a gamma function was used to characterize data obtained during the High Altitude Ice Crystals and High Ice Water Content (HAIC-HIWC) project based out of Cayenne, French Guiana, in 2015. PSDs measured by a 2D stereo probe and a precipitation imaging probe for particles with maximum dimension (D max) > 55 μm were used to show how the gamma parameters varied with environmental conditions, including temperature (T) and convective properties such as cloud type, mesoscale convective system (MCS) age, distance away from the nearest convective peak, and underlying surface characteristics. Four kinds of modality PSDs were observed: unimodal PSDs and three types of multimodal PSDs (Bimodal1 with breakpoints 100 ± 20 μm between modes, Bimodal2 with breakpoints 1000 ± 300 μm, and Trimodal PSDs with two breakpoints). The T and ice water content (IWC) are the most important factors influencing the modality of PSDs, with the frequency of multimodal PSDs increasing with increasing T and IWC. An ellipsoid of equally plausible solutions in (No –λ–μ) phase space is defined for each mode of the observed PSDs for different environmental conditions. The percentage overlap between ellipsoids was used to quantify the differences between overlapping ellipsoids for varying conditions. The volumes of the ellipsoid decrease with increasing IWC for most cases, and (No –λ–μ) vary with environmental conditions related to distribution of IWC. HIWC regions are dominated by small irregular ice crystals and columns. The parameters (No –λ–μ) in each mode exhibit mutual dependence.
Abstract
A new method that automatically determines the modality of an observed particle size distribution (PSD) and the representation of each mode as a gamma function was used to characterize data obtained during the High Altitude Ice Crystals and High Ice Water Content (HAIC-HIWC) project based out of Cayenne, French Guiana, in 2015. PSDs measured by a 2D stereo probe and a precipitation imaging probe for particles with maximum dimension (D max) > 55 μm were used to show how the gamma parameters varied with environmental conditions, including temperature (T) and convective properties such as cloud type, mesoscale convective system (MCS) age, distance away from the nearest convective peak, and underlying surface characteristics. Four kinds of modality PSDs were observed: unimodal PSDs and three types of multimodal PSDs (Bimodal1 with breakpoints 100 ± 20 μm between modes, Bimodal2 with breakpoints 1000 ± 300 μm, and Trimodal PSDs with two breakpoints). The T and ice water content (IWC) are the most important factors influencing the modality of PSDs, with the frequency of multimodal PSDs increasing with increasing T and IWC. An ellipsoid of equally plausible solutions in (No –λ–μ) phase space is defined for each mode of the observed PSDs for different environmental conditions. The percentage overlap between ellipsoids was used to quantify the differences between overlapping ellipsoids for varying conditions. The volumes of the ellipsoid decrease with increasing IWC for most cases, and (No –λ–μ) vary with environmental conditions related to distribution of IWC. HIWC regions are dominated by small irregular ice crystals and columns. The parameters (No –λ–μ) in each mode exhibit mutual dependence.