Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Yoshihiro Tomikawa x
  • All content x
Clear All Modify Search
Yoshihiro Tomikawa

Abstract

This study examines why the persistence of easterly wind during major stratospheric sudden warmings (SSWs) varies from one SSW to another. From the 22 SSWs identified between 1979 and 2009, six long and six short SSWs of easterly wind periods longer than 20 days and shorter than 10 days, respectively, are chosen and their composites are compared. While the polar-night jet is stronger than the climatological jet before long SSWs, the preconditioning of the polar-night jet tends to occur before short SSWs. After the occurrence of SSWs, the easterly wind of short SSWs quickly returns to a westerly wind due to large positive Eliassen–Palm (E–P) flux divergence in the winter polar stratosphere. The easterly wind of long SSWs lasts for 20–40 days because the E–P flux divergence is small whether it is positive or negative. Such a difference in the E–P flux divergence originates from the difference in the upward E–P flux from the troposphere. On the other hand, the positive E–P flux divergence during short SSWs is not caused by the variation of upward E–P flux from the troposphere but could be due to the shear instability caused by the overreflection of zonal wavenumber 1 planetary waves at the critical surface. The difference in the persistence of easterly wind between long and short SSWs also has a large impact on the planetary wave activity in the winter stratosphere.

Full access
Yoshihiro Tomikawa, Kaoru Sato, and Theodore G. Shepherd

Abstract

The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics.

Full access
Ryosuke Shibuya, Kaoru Sato, Yoshihiro Tomikawa, Masaki Tsutsumi, and Toru Sato

Abstract

Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013.

The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs).

Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere.

It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.

Full access
Kazuyuki Miyazaki, Shingo Watanabe, Yoshio Kawatani, Kaoru Sato, Yoshihiro Tomikawa, and Masaaki Takahashi

Abstract

The relative roles of atmospheric motions on various scales, from mesoscale to planetary scale, in transport and mixing in the extratropical tropopause region are investigated using a high-vertical-resolution general circulation model (GCM). The GCM with a vertical resolution of about 300 m explicitly represents the propagation and breaking of gravity waves and the induced transport and mixing. A downward control calculation shows that the Eliassen–Palm (E-P) flux of the gravity waves diverges and induces a mean equatorward flow in the extratropical tropopause region, which differs from the mean poleward flow induced by the convergence of large-scale E-P fluxes. The diffusion coefficients estimated from the eddy potential vorticity flux in tropopause-based coordinates reveal that isentropic motions diffuse air between 20 K below and 10 K above the tropopause from late autumn to early spring, while vertical mixing is strongly suppressed at around 10–15 K above the tropopause throughout the year. The isentropic mixing is mainly caused by planetary- and synoptic-scale motions, while small-scale motions with a horizontal scale of less than a few thousand kilometers largely affect the three-dimensional mixing just above the tropopause. Analysis of the gravity wave energy and atmospheric instability implies that the small-scale dynamics associated with the dissipation and saturation of gravity waves is a significant cause of the three-dimensional mixing just above the tropopause. A rapid increase in the static stability in the tropopause inversion layer is considered to play an important role in controlling the gravity wave activity around the tropopause.

Full access
Kazuyuki Miyazaki, Shingo Watanabe, Yoshio Kawatani, Yoshihiro Tomikawa, Masaaki Takahashi, and Kaoru Sato

Abstract

A high-vertical-resolution general circulation model (GCM) output has been analyzed to clarify transport and mixing processes in the extratropical tropopause region. The high-resolution GCM, with a vertical resolution of about 300 m above the extratropical upper troposphere, allows simulation of fine atmospheric structures near the tropopause, such as the extratropical tropopause transition layer (ExTL) and the tropopause inversion layer (TIL). The high-resolution GCM realistically simulates fine thermal and dynamic structures in the extratropical tropopause region. The thickness and maximum stability of the simulated TIL are consistent with observations. The high-resolution output was analyzed using a zonal mean potential vorticity (PV) equation to identify dominant transport processes in the extratropical tropopause region. In the Northern Hemisphere extratropics during winter, mean downward advection sharpens the PV gradient between the tropopause and 20 K below it, whereas latitudinal variation in isentropic mixing sharpens the vertical PV gradient between the tropopause and 10 K above it. During summer, vertical mixing substantially sharpens the vertical PV gradient at 10–25 K above the tropopause. These sharpening effects may be strongly related to the formation mechanisms of strong concentration gradients of chemical tracers around the ExTL. Mechanisms of evolution of the TIL are also discussed by analyzing a thermodynamic equation. Downward heat advection and radiation processes primarily determine the seasonality of the TIL. The analysis results suggest that the locations of the TIL and the ExTL can be similar because of common dynamic processes and interactions between constituent distributions and thermal structure.

Full access
Yoshihiro Tomikawa, Masahiro Nomoto, Hiroaki Miura, Masaki Tsutsumi, Koji Nishimura, Takuji Nakamura, Hisao Yamagishi, Takashi Yamanouchi, Toru Sato, and Kaoru Sato

Abstract

Characteristically strong vertical wind disturbances (VWDs) with magnitudes larger than 1 m s−1 were observed in the Antarctic troposphere using a new mesosphere–stratosphere–troposphere (MST) radar called the Program of the Antarctic Syowa MST/incoherent scatter (IS) Radar (PANSY) during 15–19 June 2012 at Syowa Station (69.0°S, 39.6°E). In the same period, two synoptic-scale cyclones approached Syowa Station and caused a strong wind event (SWE) at the surface. The VWDs observed during the SWE at Syowa Station had a nearly standing (i.e., no phase tilt with height) phase structure up to the tropopause and a power spectrum proportional to the − power of frequency. On the other hand, the observed VWDs were not associated with systematic horizontal momentum fluxes. Meteorological fields around Syowa Station during the SWE were successfully simulated using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A strong VWD was also simulated at the model grid of 70.0°S, 40.0°E in NICAM, which had a standing phase structure similar to the observed ones. An analysis based on the Froude number showed that the simulated VWD was likely due to a hydraulic jump leeward of the coastal mountain ridge. The Scorer parameter analysis indicated that the observed VWDs at Syowa Station during 16–17 June 2012 were likely due to the hydraulic jump similar to that in NICAM. On the other hand, a possibility of lee waves was also suggested for the VWD observed on 18 June 2012.

Full access