Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: You-Soon Chang x
  • Refine by Access: All Content x
Clear All Modify Search
Gabriel A. Vecchi, Rym Msadek, Whit Anderson, You-Soon Chang, Thomas Delworth, Keith Dixon, Rich Gudgel, Anthony Rosati, Bill Stern, Gabriele Villarini, Andrew Wittenberg, Xiasong Yang, Fanrong Zeng, Rong Zhang, and Shaoqing Zhang

Abstract

Retrospective predictions of multiyear North Atlantic Ocean hurricane frequency are explored by applying a hybrid statistical–dynamical forecast system to initialized and noninitialized multiyear forecasts of tropical Atlantic and tropical-mean sea surface temperatures (SSTs) from two global climate model forecast systems. By accounting for impacts of initialization and radiative forcing, retrospective predictions of 5- and 9-yr mean tropical Atlantic hurricane frequency show significant correlations relative to a null hypothesis of zero correlation. The retrospective correlations are increased in a two-model average forecast and by using a lagged-ensemble approach, with the two-model ensemble decadal forecasts of hurricane frequency over 1961–2011 yielding correlation coefficients that approach 0.9. These encouraging retrospective multiyear hurricane predictions, however, should be interpreted with care: although initialized forecasts have higher nominal skill than uninitialized ones, the relatively short record and large autocorrelation of the time series limits confidence in distinguishing between the skill caused by external forcing and that added by initialization. The nominal increase in correlation in the initialized forecasts relative to the uninitialized experiments is caused by improved representation of the multiyear tropical Atlantic SST anomalies. The skill in the initialized forecasts comes in large part from the persistence of a mid-1990s shift by the initialized forecasts, rather than from predicting its evolution. Predicting shifts like that observed in 1994/95 remains a critical issue for the success of multiyear forecasts of Atlantic hurricane frequency. The retrospective forecasts highlight the possibility that changes in observing system impact forecast performance.

Full access
Xiaosong Yang, Anthony Rosati, Shaoqing Zhang, Thomas L. Delworth, Rich G. Gudgel, Rong Zhang, Gabriel Vecchi, Whit Anderson, You-Soon Chang, Timothy DelSole, Keith Dixon, Rym Msadek, William F. Stern, Andrew Wittenberg, and Fanrong Zeng

Abstract

The decadal predictability of sea surface temperature (SST) and 2-m air temperature (T2m) in the Geophysical Fluid Dynamics Laboratory (GFDL) decadal hindcasts, which are part of the Fifth Coupled Model Intercomparison Project experiments, has been investigated using an average predictability time (APT) analysis. Comparison of retrospective forecasts initialized using the GFDL Ensemble Coupled Data Assimilation system with uninitialized historical forcing simulations using the same model allows identification of the internal multidecadal pattern (IMP) for SST and T2m. The IMP of SST is characterized by an interhemisphere dipole, with warm anomalies centered in the North Atlantic subpolar gyre region and North Pacific subpolar gyre region, and cold anomalies centered in the Antarctic Circumpolar Current region. The IMP of T2m is characterized by a general bipolar seesaw, with warm anomalies centered in Greenland and cold anomalies centered in Antarctica. The retrospective prediction skill of the initialized system, verified against independent observational datasets, indicates that the IMP of SST may be predictable up to 4 (10) yr lead time at 95% (90%) significance level, and the IMP of T2m may be predictable up to 2 (10) yr at the 95% (90%) significance level. The initialization of multidecadal variations of northward oceanic heat transport in the North Atlantic significantly improves the predictive skill of the IMP. The dominant roles of oceanic internal dynamics in decadal prediction are further elucidated by fixed-forcing experiments in which radiative forcing is returned abruptly to 1961 values. These results point toward the possibility of meaningful decadal climate outlooks using dynamical coupled models if they are appropriately initialized from a sustained climate observing system.

Full access
Gabriel A. Vecchi, Rym Msadek, Whit Anderson, You-Soon Chang, Thomas Delworth, Keith Dixon, Rich Gudgel, Anthony Rosati, Bill Stern, Gabriele Villarini, Andrew Wittenberg, Xiasong Yang, Fanrong Zeng, Rong Zhang, and Shaoqing Zhang
Full access
Gabriel A. Vecchi, Rym Msadek, Whit Anderson, You-Soon Chang, Thomas Delworth, Keith Dixon, Rich Gudgel, Anthony Rosati, Bill Stern, Gabriele Villarini, Andrew Wittenberg, Xiaosong Yang, Fanrong Zeng, Rong Zhang, and Shaoqing Zhang
Full access