Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Youhua Tang x
- Refine by Access: All Content x
Abstract
The National Air Quality Forecasting Capability (NAQFC) upgraded its modeling system that provides developmental numerical predictions of particulate matter smaller than 2.5 μm in diameter (PM2.5) in January 2015. The issuance of PM2.5 forecast guidance has become more punctual and reliable because developmental PM2.5 predictions are provided from the same system that produces operational ozone predictions on the National Centers for Environmental Prediction (NCEP) supercomputers.
There were three major upgrades in January 2015: 1) incorporation of real-time intermittent sources for particles emitted from wildfires and windblown dust originating within the NAQFC domain, 2) suppression of fugitive dust emissions from snow- and/or ice-covered terrain, and 3) a shorter life cycle for organic nitrate in the gaseous-phase chemical mechanism. In May 2015 a further upgrade for emission sources was included using the U.S. Environmental Protection Agency’s (EPA) 2011 National Emission Inventory (NEI). Emissions for ocean-going ships and on-road mobile sources will continue to rely on NEI 2005.
Incremental tests and evaluations of these upgrades were performed over multiple seasons. They were verified against the EPA’s AIRNow surface monitoring network for air pollutants. Impacts of the three upgrades on the prediction of surface PM2.5 concentrations show large regional variability: the inclusion of windblown dust emissions in May 2014 improved PM2.5 predictions over the western states and the suppression of fugitive dust in January 2015 reduced PM2.5 bias by 52%, from 6.5 to 3.1 μg m−3 against a monthly average of 9.4 μg m−3 for the north-central United States.
Abstract
The National Air Quality Forecasting Capability (NAQFC) upgraded its modeling system that provides developmental numerical predictions of particulate matter smaller than 2.5 μm in diameter (PM2.5) in January 2015. The issuance of PM2.5 forecast guidance has become more punctual and reliable because developmental PM2.5 predictions are provided from the same system that produces operational ozone predictions on the National Centers for Environmental Prediction (NCEP) supercomputers.
There were three major upgrades in January 2015: 1) incorporation of real-time intermittent sources for particles emitted from wildfires and windblown dust originating within the NAQFC domain, 2) suppression of fugitive dust emissions from snow- and/or ice-covered terrain, and 3) a shorter life cycle for organic nitrate in the gaseous-phase chemical mechanism. In May 2015 a further upgrade for emission sources was included using the U.S. Environmental Protection Agency’s (EPA) 2011 National Emission Inventory (NEI). Emissions for ocean-going ships and on-road mobile sources will continue to rely on NEI 2005.
Incremental tests and evaluations of these upgrades were performed over multiple seasons. They were verified against the EPA’s AIRNow surface monitoring network for air pollutants. Impacts of the three upgrades on the prediction of surface PM2.5 concentrations show large regional variability: the inclusion of windblown dust emissions in May 2014 improved PM2.5 predictions over the western states and the suppression of fugitive dust in January 2015 reduced PM2.5 bias by 52%, from 6.5 to 3.1 μg m−3 against a monthly average of 9.4 μg m−3 for the north-central United States.
Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.
Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.