Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Youlong Xia x
  • Refine by Access: All Content x
Clear All Modify Search
Kingtse C. Mo, Lindsey N. Long, Youlong Xia, S. K. Yang, Jae E. Schemm, and Michael Ek

Abstract

Drought indices derived from the Climate Forecast System Reanalysis (CFSR) are compared with indices derived from the ensemble North American Land Data Assimilation System (NLDAS) and the North American Regional Reanalysis (NARR) over the United States. Uncertainties in soil moisture, runoff, and evapotranspiration (E) from three systems are assessed by comparing them with limited observations, including E from the AmeriFlux data, soil moisture from the Oklahoma Mesonet and the Illinois State Water Survey, and streamflow data from the U.S. Geological Survey (USGS). The CFSR has positive precipitation (P) biases over the western mountains, the Pacific Northwest, and the Ohio River valley in winter and spring. In summer, it has positive biases over the Southeast and large negative biases over the Great Plains. These errors limit the ability to use the standardized precipitation indices (SPIs) derived from the CFSR to measure the severity of meteorological droughts. To compare with the P analyses, the Heidke score for the 6-month SPI derived from the CFSR is on average about 0.5 for the three-category classification of drought, floods, and neutral months. The CFSR has positive E biases in spring because of positive biases in downward solar radiation and high potential evaporation. The negative E biases over the Great Plains in summer are due to less P and soil moisture in the root zone. The correlations of soil moisture percentile between the CFSR and the ensemble NLDAS are regionally dependent. The correlations are higher over the area east of 100°W and the West Coast. There is less agreement between them over the western interior region.

Full access
Youlong Xia, Michael B. Ek, Yihua Wu, Trent Ford, and Steven M. Quiring

Abstract

In this second part of a two-part paper, the impacts of soil texture and vegetation type misclassification and their combined effect on soil moisture, evapotranspiration, and total runoff simulation are investigated using the Noah model. The results show that these impacts are significant for most regions and soil layers, although they vary depending on soil texture classification, vegetation type, and season. The use of site-observed soil texture classification and vegetation type in the model does not necessarily improve anomaly correlations and reduce mean absolute error for soil moisture simulations. Instead, results are mixed when examining all regions and soil layers. This is attributed to the compensation effects (e.g., effect of ill-calibrated model parameters), as Noah has been more or less calibrated with model-specified soil texture classification and vegetation type. The site-based analysis shows that Noah can reasonably simulate the variation of daily evapotranspiration, soil moisture, and total runoff when soil texture classification (vegetation type) is corrected from loam (forest) to clay (grasslands) or vice versa. This suggests that the performance of Noah can be further improved by tuning model parameters when site-observed soil texture and vegetation type are used.

Full access
Zengchao Hao, Fanghua Hao, Youlong Xia, Vijay P. Singh, Yang Hong, Xinyi Shen, and Wei Ouyang

Abstract

Drought is a slowly varying natural phenomenon and may have wide impacts on a range of sectors. Tremendous efforts have therefore been devoted to drought monitoring and prediction to reduce potential impacts of drought. Reliable drought prediction is critically important to provide information ahead of time for early warning to facilitate drought-preparedness plans. The U.S. Drought Monitor (USDM) is a composite drought product that depicts drought conditions in categorical forms, and it has been widely used to track drought and its impacts for operational and research purposes. The USDM is an assessment of drought condition but does not provide drought prediction information. Given the wide application of USDM, drought prediction in a categorical form similar to that of USDM would be of considerable importance, but it has not been explored thus far. This study proposes a statistical method for categorical drought prediction by integrating the USDM drought category as an initial condition with drought information from other sources such as drought indices from land surface simulation or statistical prediction. Incorporating USDM drought categories and drought indices from phase 2 of the North American Land Data Assimilation System (NLDAS-2), the proposed method is tested in Texas for 2001–14. Results show satisfactory performance of the proposed method for categorical drought prediction, which provides useful information to aid early warning for drought-preparedness plans.

Full access
Youlong Xia, Trent W. Ford, Yihua Wu, Steven M. Quiring, and Michael B. Ek

Abstract

The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models, and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states, as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable because of the diversity of climatological conditions, land cover, soil texture, and topographies of the stations, and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy, and imprecision in the data can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure that the data are of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System, phase 2 (NLDAS-2), Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20-cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and west Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1200 NASMD stations in the near future.

Full access
Youlong Xia, Mrinal K. Sen, Charles S. Jackson, and Paul L. Stoffa

Abstract

This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.

Full access
Ben Livneh, Youlong Xia, Kenneth E. Mitchell, Michael B. Ek, and Dennis P. Lettenmaier

Abstract

A negative snow water equivalent (SWE) bias in the snow model of the Noah land surface scheme used in the NCEP suite of numerical weather and climate prediction models has been noted by several investigators. This bias motivated a series of offline tests of model extensions and improvements intended to reduce or eliminate the bias. These improvements consist of changes to the model’s albedo formulation that include a parameterization for snowpack aging, changes to how pack temperature is computed, and inclusion of a provision for refreeze of liquid water in the pack. Less extensive testing was done on the performance of model extensions with alternate areal depletion parameterizations. Model improvements were evaluated through comparisons of point simulations with National Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) SWE data for deep-mountain snowpacks at selected stations in the western United States, as well as simulations of snow areal extent over the conterminous United States (CONUS) domain, compared with observational data from the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS). The combination of snow-albedo decay and liquid-water refreeze results in substantial improvements in the magnitude and timing of peak SWE, as well as increased snow-covered extent at large scales. Modifications to areal snow depletion thresholds yielded more realistic snow-covered albedos at large scales.

Full access
Grey S. Nearing, David M. Mocko, Christa D. Peters-Lidard, Sujay V. Kumar, and Youlong Xia

Abstract

Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

Full access
Zengchao Hao, Xing Yuan, Youlong Xia, Fanghua Hao, and Vijay P. Singh

Abstract

In past decades, severe drought events have struck different regions around the world, leading to huge losses to a wide array of environmental and societal sectors. Because of wide impacts of drought, it is of critical importance to monitor drought in near–real time and provide early warning. This article provides an overview of the development of drought monitoring and prediction systems (DMAPS) at regional and global scales. After introducing drought indicators, drought monitoring (based on different data sources and tools) is summarized, along with an introduction of statistical and dynamical drought prediction approaches. The current progress of the development and implementation of DMAPS with various indicators at different temporal and/or spatial resolutions, based on the land surface modeling, remote sensing, and seasonal climate forecast, at the regional and global scales is then reviewed. Advances in drought monitoring with multiple data sources and tools and prediction from multimodel ensembles are highlighted. Also highlighted are challenges and opportunities, including near-real-time and long-term data products, indicator linkage to impacts, prediction skill improvement, and information dissemination/communication. The review of different components of these systems will provide useful guidelines and insights for the future development of effective DMAPS to aid drought modeling and management.

Open access
Youlong Xia, Michael B. Ek, Yihua Wu, Trent Ford, and Steven M. Quiring

Abstract

Soil moisture observations from seven observational networks (spanning portions of seven states) with different biome and climate conditions were used in this study to evaluate multimodel simulated soil moisture products. The four land surface models, including Noah, Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity model (VIC), were run within phase 2 of the North American Land Data Assimilation System (NLDAS-2), with a ⅛° spatial resolution and hourly temporal resolution. Hundreds of sites in Alabama, Colorado, Michigan, Nebraska, Oklahoma, West Texas, and Utah were used to evaluate simulated soil moisture in the 0–10-, 10–40-, and 40–100-cm soil layers. Soil moisture was spatially averaged in each state to reduce noise. In general, the four models captured broad features (e.g., seasonal variation) of soil moisture variations in all three soil layers in seven states, except for the 10–40-cm soil layer in West Texas and the 40–100-cm soil layer in Alabama, where the anomaly correlations are weak. Overall, Mosaic, SAC, and the ensemble mean have the highest simulation skill and VIC has the lowest simulation skill. The results show that Noah and VIC are wetter than the observations while Mosaic and SAC are drier than the observations, mostly likely because of systematic errors in model evapotranspiration.

Full access
Jiarui Dong, Mike Ek, Dorothy Hall, Christa Peters-Lidard, Brian Cosgrove, Jeff Miller, George Riggs, and Youlong Xia

Abstract

Understanding and quantifying satellite-based, remotely sensed snow cover uncertainty are critical for its successful utilization. The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover errors have been previously recognized to be associated with factors such as cloud contamination, snowpack grain sizes, vegetation cover, and topography; however, the quantitative relationship between the retrieval errors and these factors remains elusive. Joint analysis of the MODIS fractional snow cover (FSC) from Collection 6 (C6) and in situ air temperature and snow water equivalent measurements provides a unique look at the error structure of the MODIS C6 FSC products. Analysis of the MODIS FSC dataset over the period from 2000 to 2005 was undertaken over the continental United States (CONUS) with an extensive observational network. When compared to MODIS Collection 5 (C5) snow cover area, the MODIS C6 FSC product demonstrates a substantial improvement in detecting the presence of snow cover in Nevada [30% increase in probability of detection (POD)], especially in the early and late snow seasons; some improvement over California (10% POD increase); and a relatively small improvement over Colorado (2% POD increase). However, significant spatial and temporal variations in accuracy still exist, and a proxy is required to adequately predict the expected errors in MODIS C6 FSC retrievals. A relationship is demonstrated between the MODIS FSC retrieval errors and temperature over the CONUS domain, captured by a cumulative double exponential distribution function. This relationship is shown to hold for both in situ and modeled daily mean air temperature. Both of them are useful indices in filtering out the misclassification of MODIS snow cover pixels and in quantifying the errors in the MODIS C6 product for various hydrological applications.

Full access