Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Young-Ho Seung x
  • Refine by Access: All Content x
Clear All Modify Search
Young-Ho Seung


The generation mechanism for a wintertime cyclonic gyre in the western Labrador Sea, first observed by Clarke and Gascard, is studied by using simple theoretical models. It is shown that atmospheric cooling, which occurs during outbreaks of cold, dry continental air, can be localized by air modification induced by oceanic heat and water vapor transport. The resulting scale of cooling is comparable to the cross-shore scale of the observed gyre. The density structure of the underlying water mass is then altered by this localized cooling and also by horizontal mixing. The model results compare reasonably well with observations. Finally, it is demonstrated that the observed gyre may be generated when the new density structure adjusts itself to geostrophic equilibrium.

Full access
Sok Kuh Kang, Young Ho Seung, Jong Jin Park, Jae-Hun Park, Jae Hak Lee, Eun Jin Kim, Young Ho Kim, and Moon-Sik Suk


Trajectories of Argo floats deployed in the East/Japan Sea from 2001 to 2014 reveal that the middepth gyral circulation pattern of the Japan basin, the central part of the East/Japan Sea, undergoes a seasonal variation. The middepth circulation of the Japan basin is found to be characterized usually by the gyres trapped to the east of the Bogorov Rise (E-gyres) and those extending farther westward into the whole basin (BW-gyres). The E-gyre trajectories are generally associated with the turning of the floats toward deeper regions off the isobaths. This occurs in winter either on the northern or eastern side of the eastern Japan basin. It seems that the upstream part of the otherwise BW-gyre is subject to a strong negative wind stress curl in winter, and there the circulating water columns are driven toward the deeper region, thus triggering the formation of the E-gyre. The topographic effect associated with the Bogorov Rise seems to interfere thereafter in the process of determining the passage of the E-gyre. Otherwise, the water columns continue to flow along the isobaths, hence maintaining the BW-gyre. To the knowledge of the authors, this is the first observational evidence of seasonal variability in the middepth gyral circulation pattern in the East/Japan Sea. It suggests that oceanic middepth circulation, usually known to be quasi steady or slowly varying on climatological time scales, might also undergo a significant seasonal variation as it does in the East/Japan Sea.

Full access
Jhoon Kim, Ukkyo Jeong, Myoung-Hwan Ahn, Jae H. Kim, Rokjin J. Park, Hanlim Lee, Chul Han Song, Yong-Sang Choi, Kwon-Ho Lee, Jung-Moon Yoo, Myeong-Jae Jeong, Seon Ki Park, Kwang-Mog Lee, Chang-Keun Song, Sang-Woo Kim, Young Joon Kim, Si-Wan Kim, Mijin Kim, Sujung Go, Xiong Liu, Kelly Chance, Christopher Chan Miller, Jay Al-Saadi, Ben Veihelmann, Pawan K. Bhartia, Omar Torres, Gonzalo González Abad, David P. Haffner, Dai Ho Ko, Seung Hoon Lee, Jung-Hun Woo, Heesung Chong, Sang Seo Park, Dennis Nicks, Won Jun Choi, Kyung-Jung Moon, Ara Cho, Jongmin Yoon, Sang-kyun Kim, Hyunkee Hong, Kyunghwa Lee, Hana Lee, Seoyoung Lee, Myungje Choi, Pepijn Veefkind, Pieternel F. Levelt, David P. Edwards, Mina Kang, Mijin Eo, Juseon Bak, Kanghyun Baek, Hyeong-Ahn Kwon, Jiwon Yang, Junsung Park, Kyung Man Han, Bo-Ram Kim, Hee-Woo Shin, Haklim Choi, Ebony Lee, Jihyo Chong, Yesol Cha, Ja-Ho Koo, Hitoshi Irie, Sachiko Hayashida, Yasko Kasai, Yugo Kanaya, Cheng Liu, Jintai Lin, James H. Crawford, Gregory R. Carmichael, Michael J. Newchurch, Barry L. Lefer, Jay R. Herman, Robert J. Swap, Alexis K. H. Lau, Thomas P. Kurosu, Glen Jaross, Berit Ahlers, Marcel Dobber, C. Thomas McElroy, and Yunsoo Choi


The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).

Free access