Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Young-Min Yang x
  • Refine by Access: All Content x
Clear All Modify Search
Juan Li, Bin Wang, and Young-Min Yang

Abstract

The distinctive monsoon climate over East Asia, which is affected by the vast Eurasian continent and Pacific Ocean basin and the high-altitude Tibetan Plateau, provides arguably the best testbed for evaluating the competence of Earth system climate models. Here, a set of diagnostic metrics, consisting of 14 items and 7 variables, is specifically developed. This physically intuitive set of metrics focuses on the essential features of the East Asian summer monsoon (EASM) and East Asian winter monsoon (EAWM), and includes fields that depict the climatology, the major modes of variability, and unique characteristics of the EASM. The metrics are applied to multimodel historical simulations derived from 20 models that participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively), along with the newly developed Nanjing University of Information Science and Technology Earth System Model, version 3. The CMIP5 models show significant improvements over the CMIP3 models in terms of the simulated East Asian monsoon circulation systems on a regional scale, major modes of EAWM variability, the monsoon domain and precipitation intensity, and teleconnection associated with the heat source over the Philippine Sea. Clear deficiencies persist from CMIP3 to CMIP5 with respect to capturing the major modes of EASM variability, as well as the relationship between the EASM and ENSO during El Niño developing and decay phases. The possible origins that affect models’ performance are also discussed. The metrics provide a tool for evaluating the performance of Earth system climate models, and facilitating the assessment of past and projected future changes of the East Asian monsoon.

Open access
In-Sik Kang, Fei Liu, Min-Seop Ahn, Young-Min Yang, and Bin Wang

Abstract

The dynamics of the Madden–Julian oscillation (MJO) are investigated using an aqua-planet general circulation model (GCM) and a simple one-and-a-half-layer model with a first-baroclinic mode and a planetary boundary layer. The aqua-planet GCM with zonally symmetric SST conditions simulates tropical intraseasonal disturbances with a dominant time scale of about 20 days, which is much faster than that of the observed MJO, although the GCM with realistic surface boundary conditions is shown to reproduce the observed MJO reasonably well. The SST with a broader meridional structure slows down the propagation speed. Several experiments done with various zonally symmetric surface boundary conditions showed that the meridional structure of the SST in fact is a control factor for the propagation characteristics of the MJO. With a simple theoretical model for the MJO, it is shown that the instability of the moist coupled Kelvin–Rossby waves depends on the SST structure, which determines the lower-level moisture field. The SST with a narrow meridional structure prefers to enhance only the fast eastward Kelvin wave, while the broader SST provides enough off-equatorial moisture for the growth of the Rossby component, which couples strongly with the Kelvin component and slows down the eastward modes. The SST influences the coupled Kelvin–Rossby waves through changes in the moist static stability of the free atmosphere and the frictional moisture convergence in the planetary boundary layer. The present results suggest that the essential dynamics of the MJO are rooted in a convectively coupled Kelvin–Rossby wave packet with frictional moisture convergence.

Full access
Hanjun Kim, Sarah M. Kang, Yen-Ting Hwang, and Young-Min Yang

Abstract

This study explores the dependence of the climate response on the altitude of black carbon in the northern subtropics by employing an atmospheric general circulation model coupled to an aquaplanet mixed layer ocean, with a focus on the pattern changes in the temperature, hydrological cycle, and large-scale circulation. Black carbon added below or within the subtropical low-level clouds tends to suppress convection, which reduces the low cloud amount, resulting in a positive cloud radiative forcing. The warmer northern subtropics then induce a northward shift of the intertropical convergence zone (ITCZ) and a poleward expansion of the descending branch of the northern Hadley cell. As the black carbon–induced local warming is amplified by clouds and is advected by the anomalous Hadley circulation, the entire globe gets warmer. In contrast, black carbon added near the surface increases the buoyancy of air parcels to enhance convection, leading to an increase in the subtropical low cloud amount and a negative cloud radiative forcing. The temperature increase remains local to where black carbon is added and elsewhere decreases, so that the ITCZ is shifted southward and the descending branch of the northern Hadley cell contracts equatorward. Consistent with previous studies, the authors demonstrate that the climate response to black carbon is highly sensitive to the vertical distribution of black carbon relative to clouds; hence, models have to accurately compute the vertical transport of black carbon to enhance their skill in simulating the climatic effects of black carbon.

Full access
Jae-Heung Park, Mi-Kyung Sung, Young-Min Yang, Jiuwei Zhao, Soon-Il An, and Jong-Seong Kug

Abstract

The North Pacific Oscillation (NPO), a primary atmospheric mode over the North Pacific Ocean in boreal winter, is known to trigger El Niño–Southern Oscillation (ENSO) in the following winter, the process of which is recognized as the seasonal footprinting mechanism (SFM). On the basis of the analysis of model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), we found that the SFM acts differently among models, and the correlation between the NPO and subsequent ENSO events, called the SFM efficiency, depends on the background mean state of the model. That is, SFM efficiency becomes stronger as the climatological position of the Pacific intertropical convergence zone (ITCZ) moves poleward, representing an intensification of the northern branch of the ITCZ. When the Pacific ITCZ is located poleward, the wind–evaporation–sea surface temperature (SST) feedback becomes stronger as the precipitation response to the SST anomaly is stronger in higher latitudes than that in lower latitudes. In addition, such active ocean–atmosphere interactions enhance NPO variability, favoring the SFM to operate efficiently and trigger an ENSO event. Consistent with the model results, the observed SFM efficiency increased during the decades in which the northern branch of the climatological ITCZ was intensified, supporting the importance of the tropical mean state of precipitation around the Pacific ITCZ.

Restricted access