Search Results

You are looking at 1 - 10 of 48 items for

  • Author or Editor: Yukari N. Takayabu x
  • Refine by Access: All Content x
Clear All Modify Search
Chie Yokoyama
and
Yukari N. Takayabu

Abstract

Three-dimensional rain characteristics of tropical cyclones (TCs) are statistically quantified, using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2003. Tropical cyclones are classified into four maximum intensity classes (<34, 34–64, 64–128, and ≥128 kt) and three stages (developing, mature, and decaying). First, rain characteristics of TCs are compared with those of the equatorial (10°N–10°S) mean. A notable finding here is that the average stratiform rain ratio (SRR), which is the contribution from stratiform rain in the total rainfall, of TCs is 52%, while it is 44% for the equatorial oceanic mean and 46% for the Madden–Julian oscillation in its mature phase. Stronger rain is observed in TCs both for convective and stratiform rain. Second, radial rain characteristics of TCs suggest that the region 0–60 km can be classified as “the inner core,” and 60–500 km as “the rainband.” The inner core is characterized with small SRR, very high rain-top height, and a large flash rate, indicating the vigor of convective activity. In contrast, the rainband is characterized with large SRR and relatively large rain yield per flash, indicating a large rainfall amount with a moderate convective activity. An important implication of this study is that TCs are listed in the high end of tropical oceanic organized rain systems, in terms of the organization levels of rain. Last, we use the above composite results to calculate the rainfall contribution of TCs to total annual rainfall between 35°N and 35°S as 3.3% ± 0.1%.

Full access
Ayako Seiki
and
Yukari N. Takayabu

Abstract

Statistical features of the relationship among westerly wind bursts (WWBs), the El Niño–Southern Oscillation (ENSO), and intraseasonal variations (ISVs) were examined using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis data (ERA-40) for the period of January 1979–August 2002. WWBs were detected over the Indian Ocean and the Pacific Ocean, but not over the Atlantic Ocean. WWB frequencies for each region were lag correlated with a sea surface temperature anomaly over the Niño-3 region. WWBs tended to occur in sequence, from the western to eastern Pacific, leading the El Niño peak by 9 months to 1 month, respectively, and after around 11 months, over the Indian Ocean. These results suggest that WWB occurrences are not random, but interactive with ENSO. Composite analysis revealed that most WWBs were associated with slowdowns of eastward-propagating convective regions like the Madden–Julian oscillation (MJO), with the intensified Rossby wave response. However, seasonal and interannual variations in MJO amplitude were not correlated with WWB frequency, while a strong MJO event tended to bear WWBs. It is suggested that the strong MJO amplitude promotes favorable conditions, but it is not the only factor influencing WWB frequency. An environment common to WWB generation in all regions was the existence of background westerlies around the WWB center near the equator. It is inferred that ENSO prepares a favorable environment for the structural transformation of an MJO, that is, the intensified Rossby wave response, that results in WWB generations. The role of the background wind fields on WWB generations will be discussed in a companion paper from the perspective of energetics.

Full access
Ayako Seiki
and
Yukari N. Takayabu

Abstract

The mechanism of synoptic-scale eddy development in the generation of westerly wind bursts (WWBs) over the western–central Pacific, and their relationship with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO), were examined. In the WWB occurrences, barotropic structures of equatorial eddy westerlies with cyclonic disturbances were found from the surface to the upper troposphere. The dominant contributions to substantial eddy kinetic energy (EKE) were the barotropic energy conversion (KmKe) in the lower and middle tropospheres and the conversion from eddy available potential energy (PeKe) in the upper troposphere. Low-frequency environmental westerlies centered near the equator preceded strong zonal convergence and meridional shear, resulting in the substantial KmKe. The activation of synoptic convection also contributed to an increase in EKE through PeKe. These energies were redistributed to the lower-equatorial troposphere through energy flux convergence (GKe). These results showed that environmental fields contribute to the EKE increase near the equator and are important factors in WWB occurrences. Next, eddy growth was compared under different phases of MJO and ENSO. The MJO westerly phases of strong MJO events were classified into two groups, in terms of ENSO phases. Higher EKE values were found over the equatorial central Pacific in the WWB–ENSO correlated (pre–El Niño) periods. The energetics during these periods comported with those of the WWB generations. In the uncorrelated periods, the enhancement of eddy disturbances occurred far from the equator near the Philippines, where the activities of the easterly wave disturbances are well known. It is noteworthy that the enhanced region of the disturbances in the pre–El Niño periods coincided with the vicinity of large-scale MJO convection. It is suggested that coincidence corresponds with an enhancement of the internal disturbances embedded in the MJO, which is found only when the environmental conditions are favorable in association with ENSO.

Full access
Atsushi Hamada
and
Yukari N. Takayabu

Abstract

This paper demonstrates the impact of the enhancement in detectability by the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core observatory. By setting two minimum detectable reflectivities—12 and 18 dBZ—artificially to 6 months of GPM DPR measurements, the precipitation occurrence and volume increase by ~21.1% and ~1.9%, respectively, between 40°S and 40°N.

GPM DPR is found to be able to detect light precipitation, which mainly consists of two distinct types. One type is shallow precipitation, which is most significant for convective precipitation over eastern parts of subtropical oceans, where deep convection is typically suppressed. The other type is probably associated with lower parts of anvil clouds associated with organized precipitation systems.

While these echoes have lower reflectivities than the official value of the minimum detectable reflectivity, they are found to mostly consist of true precipitation signals, suggesting that the official value may be too conservative for some sort of meteorological analyses. These results are expected to further the understanding of both global energy and water budgets and the diabatic heating distribution.

Full access
Atsushi Hamada
and
Yukari N. Takayabu

Abstract

The precipitation characteristics of extreme events in August determined from 13 years of satellite data around Japan in the TRMM observation region and their relationship with large-scale environmental conditions are examined. Two types of extreme events, extreme rainfall and extreme convective events, are defined in each analysis grid box using maximum near-surface rainfall and maximum 40-dBZ echo-top height in each event, respectively. There are clear differences in precipitation characteristics between the two types of extreme events. Extreme rainfall events are more organized precipitation systems than the extreme convective events, with relatively lower echo-top heights and very low lightning activity. There are also clear differences in the related environmental conditions, where the environments related to the extreme rainfall events are somewhat convectively stable and very humid in almost the entire troposphere. These facts are consistent with our previous studies and reinforce the importance of warm-rain processes in extremely intense precipitation productions. The environments related to the extreme rainfall events exhibit a zonally extended moist anomaly in the free troposphere from southern China to the east of Japan, indicating that the excessive moisture transported from the west by a large-scale flow may partially play a role in producing environmental conditions favorable for extreme rainfall. On the other hand, the environments related to extreme convective events are not associated with free-tropospheric moisture inflow. The relationships with the tropical cyclones and upper-tropospheric dynamical fields are also examined, and are found to be clearly different between the extreme rainfall events and extreme convective events.

Full access
Satoru Yokoi
and
Yukari N. Takayabu

Abstract

Variability in tropical cyclone (TC) activity is a matter of direct concern for affected populations. On interannual and longer time scales, variability in TC passage frequency can be associated with total TC frequency over the concerned ocean basin [basinwide frequency (BF)], the spatial distribution of TC genesis in the basin [genesis distribution (GD)], and the preferable track (PT) that can be considered as a function of genesis locations. To facilitate investigation of mechanisms responsible for the variability, the authors propose an approach of decomposing anomalies in the passage frequency into contributions of variability in BF, GD, and PT, which is named the Integration of Statistics on TC Activity by Genesis Location (ISTAGL) analysis. Application of this approach to TC best track data in the western North Pacific (WNP) basin reveals that overall distribution of the passage frequency trends over the 1961–2010 period is mainly due to the PT trends. On decadal time scales, passage frequency variability in midlatitudes is primarily due to PT variability, while the BF and GD also play roles in the subtropics. The authors further discuss decadal variability over the East China Sea in detail. The authors demonstrate that northward shift of the PT for TCs generated around the Philippines Sea and westward shift for TCs generated in the eastern part of the WNP contribute the variability with almost equal degree. The relationships between these PT shifts and anomalies in environmental circulation fields are also discussed.

Full access
Atsushi Hamada
and
Yukari N. Takayabu

Abstract

This study reports on the presence of suspicious “extreme rainfall” data in the 2A25 version-7 (V7) product of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) dataset and introduces a simple method for detecting and filtering out the suspicious data. These suspicious data in V7 are found by comparing the extreme rainfall characteristics in the V7 and version-6 products. Most of the suspicious extremes are located over land, especially in mountainous regions. Radar reflectivities in the suspicious extremes show significant monotonic increases toward the echo bottom. These facts indicate that the suspicious extremes are mainly caused by contamination from ground or sea clutter. A simple thresholding filter for eliminating the suspicious extreme data is developed using common characteristics in the horizontal and vertical rainfall structures and reflectivities in the suspicious extremes. The proposed filter mitigates deformations in the frequency distribution of the surface rainfall rate in the 2A25 V7 product.

Full access
Yuhi Nakamura
and
Yukari N. Takayabu

Abstract

This study investigates precipitation amounts and apparent heat sources, which are coupled with equatorial Kelvin waves and equatorial Rossby waves, using TRMM PR level 2 data products. The synoptic structures of wave disturbances are also studied using the ERA5 dataset. We define the wave phase of equatorial waves based on FFT-filtered brightness temperature and conduct composite analyses. Rossby waves show a vertically upright structure and their upright vortices induce large-amplitude column water vapor (CWV) anomalies. Precipitation activity is almost in phase with CWV, and thus is consistent with a moisture mode. Kelvin waves, on the other hand, indicate a nearly quadrature phase relationship between temperature and vertical velocity, like gravity wave structure. Specific humidity develops from near the surface to the middle troposphere as the Kelvin wave progresses. A clear negative CWV anomaly also does not exist despite the existence of negative precipitation anomalies. Convective activity corresponds well with its tilting structure of moisture and modulates the phase relationship between temperature and vertical motion. For both wave cases, apparent heat sources can amplify available potential energy despite the difference of coupling mechanisms of these two waves; precipitation is driven by CWV fluctuation for the Rossby wave case, and by buoyancy-based fluctuations for the Kelvin wave case. These can be observational evidence of actual coupling processes that is comparable to previous idealized studies.

Significance Statement

A coupling mechanism between equatorial waves and convective activity is a significant issue in tropical meteorology. While many previous idealized studies suggested some instability mechanisms, their true roles are not yet clear because detailed precipitation characteristics are not well investigated. We aim to quantify precipitation and synoptic-scale wave disturbances, and compare equatorial Rossby waves and equatorial Kelvin waves, which should have different instability coupling modes between each other, in order to shed light on a convectively coupling mechanism. We found that precipitation is actually driven by column moisture in Rossby waves and by dynamical fluctuation in Kelvin waves. Despite these competing mechanisms, similar top-heavy heating can maintain convectively coupled disturbances. Our observational results will support and improve theoretical studies.

Open access
Yuhi Nakamura
and
Yukari N. Takayabu

Abstract

Detailed precipitation characteristics coupled with equatorial Rossby and Kelvin waves are investigated. We prepare a rainfall event dataset using the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) level 2 data. Utilizing three indices, area size, maximum echo-top height, and stratiform precipitation ratio, rainfall events are classified into mesoscale convective system (MCS), deep, congestus, and shallow convective events, and “other” type. We perform composite analyses based on the wave phase defined in Part I. Precipitation amount in Rossby waves is in phase with column water vapor (CWV) anomalies and is mainly contributed by MCSs, which are simultaneously activated with deep convection. The large CWV can support deep development and organization of convection. Shallow and congestus convective events indicate their peaks just before the active phase on 10°N or in the later part of the convectively suppressed phase on the equator. A five-step evolution is shown in Kelvin waves. In the first stage, shallow convective events are triggered by high SST, followed by a dominance of congestus convective events. Then, in the developing stage, deep convective events become dominant. In the mature stage, heavy precipitation is contributed by MCSs, and mostly stratiform rain is maximized at later stages. Kelvin waves indicate relatively weak connection to CWV fluctuation. Although contrasted evolutions are indicated, large contributions by MCSs to precipitation amount are common among the two coupled waves. This is considered to result in the commonality of the equivalent depths with their top-heavy heating.

Significance Statement

A coupling mechanism between equatorial waves and convective activity is a key issue in the tropical meteorology. While many previous idealized studies suggested some instability mechanisms, detailed precipitation characteristics is not enough investigated. We prepare rainfall-event dataset observed from a spaceborne Precipitation Radar on board the TRMM satellite to quantify detailed precipitation characteristics statistically and compare equatorial Rossby waves and equatorial Kelvin waves. We found that organized convective systems and deep convection are simultaneously activated in the Rossby waves and a clear transition of convective activity is shown in the Kelvin waves. These characteristics highly correspond to waves’ synoptic-scale structures. Our observational results of detailed evolutions of rainfall events will improve understanding of coupling processes.

Open access
Yuya Hamaguchi
and
Yukari N. Takayabu

Abstract

In this study, the statistical relationship between tropical upper-tropospheric troughs (TUTTs) and the initiation of summertime tropical depression–type disturbances (TDDs) over the western and central North Pacific is investigated. By applying a spatiotemporal filter to the 34-yr record of brightness temperature and using JRA-55 products, TDD-event initiations are detected and classified as trough-related (TR) or non-trough-related (non-TR). The conventional understanding is that TDDs originate primarily in the lower troposphere; our results refine this view by revealing that approximately 30% of TDDs in the 10°–20°N latitude ranges are generated under the influence of TUTTs. Lead–lag composite analysis of both TR- and non-TR-TDDs clarifies that TR-TDDs occur under relatively dry and less convergent large-scale conditions in the lower troposphere. This result suggests that TR-TDDs can form in a relatively unfavorable low-level environment. The three-dimensional structure of the wave activity flux reveals southward and downward propagation of wave energy in the upper troposphere that converges at the midtroposphere around the region where TR-TDDs occur, suggesting the existence of extratropical forcing. Further, the role of dynamic forcing associated with the TUTT on the TR-TDD initiation is analyzed using the quasigeostrophic omega equation. The result reveals that moistening in the mid- to upper troposphere takes place in association with the sustained dynamical ascent at the southeast side of the TUTT, which precedes the occurrence of deep convective heating. Along with a higher convective available potential energy due to the destabilizing effect of TUTTs, the moistening in the mid- to upper troposphere also helps to prepare the environment favorable to TDDs initiation.

Open access