Search Results
You are looking at 1 - 10 of 13 items for
- Author or Editor: Yumin Moon x
- Refine by Access: All Content x
Abstract
Previous studies have suggested that gravity waves can transport a significantly large amount of angular momentum away from tropical cyclones, as much as 10% of the core angular momentum per hour. These previous studies used the shallow-water equations to model gravity waves radiating outward from rapidly rotating inner-core asymmetries. This issue is reinvestigated with a three-dimensional, nonhydrostatic, linear model of the vortex-anelastic equations. The response of balanced, axisymmetric vortices modeled after tropical cyclones to rotating asymmetric heat sources is examined to assess angular momentum transport by gravity waves radiating away from the core region of the vortices. Calculations show that gravity waves do transport angular momentum away from the vortex core; however, the amount transported is several orders of magnitude smaller than recent estimates.
Abstract
Previous studies have suggested that gravity waves can transport a significantly large amount of angular momentum away from tropical cyclones, as much as 10% of the core angular momentum per hour. These previous studies used the shallow-water equations to model gravity waves radiating outward from rapidly rotating inner-core asymmetries. This issue is reinvestigated with a three-dimensional, nonhydrostatic, linear model of the vortex-anelastic equations. The response of balanced, axisymmetric vortices modeled after tropical cyclones to rotating asymmetric heat sources is examined to assess angular momentum transport by gravity waves radiating away from the core region of the vortices. Calculations show that gravity waves do transport angular momentum away from the vortex core; however, the amount transported is several orders of magnitude smaller than recent estimates.
Abstract
The response of the hurricane wind field to spiral rainband heating is examined by using a three-dimensional, nonhydrostatic, linear model of the vortex–anelastic equations. Diabatic heat sources, which are designed in accordance with previous observations of spiral rainbands, are made to rotate with the flow around the hurricane-like wind field of a balanced, axisymmetric vortex. Common kinematic features are recovered, such as the overturning secondary circulation, descending midlevel radial inflow, and cyclonically accelerated tangential flow on the radially outward side of spiral rainbands. Comparison of the responses to the purely convective and stratiform rainbands indicates that the overturning secondary circulation is mostly due to the convective part of the rainband and is stronger in the upwind region, while midlevel radial inflow descending to the surface is due to the stratiform characteristics of the rainband and is stronger in the downwind region. The secondary horizontal wind maximum is exhibited in both convective and stratiform parts of the rainband, but it tends to be stronger in the downwind region. The results indicate that the primary effects of rainbands on the hurricane wind field are caused by the direct response to diabatic heating in convection embedded in them and that the structure of the diabatic heating is primarily responsible for their unique kinematic structures. Sensitivity tests confirm the robustness of the results. In addition, the response of the hurricane wind field to the rainband heating is, in the linear limit, the sum of the asymmetric potential vorticity and symmetric transverse circulations.
Abstract
The response of the hurricane wind field to spiral rainband heating is examined by using a three-dimensional, nonhydrostatic, linear model of the vortex–anelastic equations. Diabatic heat sources, which are designed in accordance with previous observations of spiral rainbands, are made to rotate with the flow around the hurricane-like wind field of a balanced, axisymmetric vortex. Common kinematic features are recovered, such as the overturning secondary circulation, descending midlevel radial inflow, and cyclonically accelerated tangential flow on the radially outward side of spiral rainbands. Comparison of the responses to the purely convective and stratiform rainbands indicates that the overturning secondary circulation is mostly due to the convective part of the rainband and is stronger in the upwind region, while midlevel radial inflow descending to the surface is due to the stratiform characteristics of the rainband and is stronger in the downwind region. The secondary horizontal wind maximum is exhibited in both convective and stratiform parts of the rainband, but it tends to be stronger in the downwind region. The results indicate that the primary effects of rainbands on the hurricane wind field are caused by the direct response to diabatic heating in convection embedded in them and that the structure of the diabatic heating is primarily responsible for their unique kinematic structures. Sensitivity tests confirm the robustness of the results. In addition, the response of the hurricane wind field to the rainband heating is, in the linear limit, the sum of the asymmetric potential vorticity and symmetric transverse circulations.
Abstract
This is the second part of a study that examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper evaluates whether the propagation of inner rainbands in the Hurricane Bill simulation is consistent with previously proposed hypotheses. Results indicate that the propagation of inner rainbands is not consistent with gravity waves, vortex Rossby waves, or squall lines. An alternative hypothesis is offered, arguing that inner rainbands are simply convective clouds that are advected by the rapidly rotating tropical cyclone wind field while being deformed into spiral shapes. A summary and a discussion of the results of both Parts I and II are provided.
Abstract
This is the second part of a study that examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper evaluates whether the propagation of inner rainbands in the Hurricane Bill simulation is consistent with previously proposed hypotheses. Results indicate that the propagation of inner rainbands is not consistent with gravity waves, vortex Rossby waves, or squall lines. An alternative hypothesis is offered, arguing that inner rainbands are simply convective clouds that are advected by the rapidly rotating tropical cyclone wind field while being deformed into spiral shapes. A summary and a discussion of the results of both Parts I and II are provided.
Abstract
This study examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper, the first part of the study, evaluates the structures of spiral rainbands and compares them to previous observations. Four types of spiral rainbands are identified: principal, secondary, distant, and inner rainbands. Principal rainbands tend to be stationary relative to the storm center, while secondary rainbands are more transient and move around the storm center. Both principal and secondary rainbands are tilted radially outward with height and have many of the commonly observed kinematic features, such as overturning secondary circulation and enhanced tangential velocity on their radially outward sides. Principal rainbands are bounded by very dry air on their radially outward sides. Distant rainbands are radially inward-tilting convective features that have dense cold pools near the surface. Inner rainbands are made of shallow convection that appears to have originated from near the eyewall. Differences in the structures of spiral rainbands between observations and the Hurricane Bill simulation are noted. The second part of the study investigates how inner rainbands propagate and makes comparison with previously proposed hypotheses such as vortex Rossby waves.
Abstract
This study examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper, the first part of the study, evaluates the structures of spiral rainbands and compares them to previous observations. Four types of spiral rainbands are identified: principal, secondary, distant, and inner rainbands. Principal rainbands tend to be stationary relative to the storm center, while secondary rainbands are more transient and move around the storm center. Both principal and secondary rainbands are tilted radially outward with height and have many of the commonly observed kinematic features, such as overturning secondary circulation and enhanced tangential velocity on their radially outward sides. Principal rainbands are bounded by very dry air on their radially outward sides. Distant rainbands are radially inward-tilting convective features that have dense cold pools near the surface. Inner rainbands are made of shallow convection that appears to have originated from near the eyewall. Differences in the structures of spiral rainbands between observations and the Hurricane Bill simulation are noted. The second part of the study investigates how inner rainbands propagate and makes comparison with previously proposed hypotheses such as vortex Rossby waves.
Abstract
Previous studies have offered hypotheses for the mechanisms that lead to secondary eyewall formation in tropical cyclones by using two-dimensional incompressible flow. Those studies represented the convection-induced vorticity field as either large but weak vortices that are the same sign as the tropical cyclone core or as purely asymmetric vorticity perturbations that are an order of magnitude weaker than the core. However, both observations and full-physics simulations of tropical cyclones indicate that the convection-induced vorticity field should also include clusters of small vorticity dipoles whose magnitude is comparable to that of the high-vorticity core. Results of numerical simulations indicate that the interaction between the tropical cyclone core vortex and the convection-induced small vorticity dipoles of considerable strength in two-dimensional flow does not lead to coherent concentric vorticity ring formation. The axisymmetrization process under the simplification of two-dimensional incompressible flow appears to be incomplete for describing secondary eyewall formation.
Abstract
Previous studies have offered hypotheses for the mechanisms that lead to secondary eyewall formation in tropical cyclones by using two-dimensional incompressible flow. Those studies represented the convection-induced vorticity field as either large but weak vortices that are the same sign as the tropical cyclone core or as purely asymmetric vorticity perturbations that are an order of magnitude weaker than the core. However, both observations and full-physics simulations of tropical cyclones indicate that the convection-induced vorticity field should also include clusters of small vorticity dipoles whose magnitude is comparable to that of the high-vorticity core. Results of numerical simulations indicate that the interaction between the tropical cyclone core vortex and the convection-induced small vorticity dipoles of considerable strength in two-dimensional flow does not lead to coherent concentric vorticity ring formation. The axisymmetrization process under the simplification of two-dimensional incompressible flow appears to be incomplete for describing secondary eyewall formation.
Abstract
In this study, the characteristics of simulated tropical cyclones (TCs) over the western North Pacific by a regional model (the WRF Model) are verified. We utilize 12-km horizontal grid spacing, and simulations are integrated for 5 days from model initialization. A total of 125 forecasts are divided into five clusters through the k-means clustering method. The TCs in the cluster 1 and 2 (group 1), which includes many TCs moving northward in the subtropical region, generally have larger track errors than for TCs in cluster 3 and 4 (group 2). The optimal steering vector is used to examine the difference in the track forecast skill between these two groups. The bias in the steering vector between the model and analysis data is found to be more substantial for group 1 TCs than group 2 TCs. The larger steering vector difference for group 1 TCs indicates that environmental fields tend to be poorly simulated in group 1 TC cases. Furthermore, the residual terms, including the storm-scale process, asymmetric convection distribution, or beta-related effect, are also larger for group 1 TCs than group 2 TCs. Therefore, it is probable that the large track forecast error for group 1 TCs is a result of unreasonable simulations of environmental wind fields and residual processes in the midlatitudes.
Abstract
In this study, the characteristics of simulated tropical cyclones (TCs) over the western North Pacific by a regional model (the WRF Model) are verified. We utilize 12-km horizontal grid spacing, and simulations are integrated for 5 days from model initialization. A total of 125 forecasts are divided into five clusters through the k-means clustering method. The TCs in the cluster 1 and 2 (group 1), which includes many TCs moving northward in the subtropical region, generally have larger track errors than for TCs in cluster 3 and 4 (group 2). The optimal steering vector is used to examine the difference in the track forecast skill between these two groups. The bias in the steering vector between the model and analysis data is found to be more substantial for group 1 TCs than group 2 TCs. The larger steering vector difference for group 1 TCs indicates that environmental fields tend to be poorly simulated in group 1 TC cases. Furthermore, the residual terms, including the storm-scale process, asymmetric convection distribution, or beta-related effect, are also larger for group 1 TCs than group 2 TCs. Therefore, it is probable that the large track forecast error for group 1 TCs is a result of unreasonable simulations of environmental wind fields and residual processes in the midlatitudes.
Abstract
Prior studies of the linear response to asymmetric heating of a balanced vortex showed that the resulting intensity change could be very closely approximated by computing the purely symmetric response to the azimuthally averaged heating. The symmetric response to the purely asymmetric part of the heating was found to have a very small and most often negative impact on the intensity of the vortex. This result stands in contrast to many previous studies that used asymmetric vorticity perturbations, which suggested that purely asymmetric forcing could lead to vortex intensification.
The issue is revisited with an improved model and some new methods of analysis. The model equations have been changed to be more consistent with the anelastic approximation, but valid for a radially varying reference state. Expressions for kinetic and available potential energies are presented for both asymmetric and symmetric motions, and these are used to quantify the flow of energy from localized, asymmetric heat sources to kinetic energy of the wind field of the symmetric vortex.
Previous conclusions were based on simulations that used instantaneous temperature perturbations to represent rapid heat release in cumulus updrafts. Purely asymmetric heat sources that evolve over time and move with the local mean wind are shown to also cause vortex weakening. Weakening of the symmetric vortex is due to extraction of energy by the evolving asymmetries that undergo significant transient growth due to downgradient transport of momentum across the radial and vertical shears of the symmetric wind field. While much of this energy is returned during the axisymmetrization of the resulting potential vorticity anomalies, there is typically a net loss of energy for the symmetric vortex. Some variations on the rotation rate and duration of the heat sources can lead to intensification rather than weakening, as does a deeper (more barotropic) vertical structure of the symmetric vortex. However, it is reaffirmed that these asymmetrically forced changes are small compared to the response to the azimuthally averaged heating of an isolated heat source.
Following the work of Hack and Schubert, the efficiency of the intensification process, defined as the ratio of injected heat energy to the kinetic energy change of the symmetric vortex, is computed for vortices of different sizes and strengths. In the limit of small perturbations, the efficiency does not depend on the temporal distribution of the heating. The efficiency is shown to increase with the intensity of the vortex and with the Coriolis parameter, with substantial efficiency increases for weak vortices. Potential applications of these results for predicting tropical cyclone formation and rapid development are discussed.
Abstract
Prior studies of the linear response to asymmetric heating of a balanced vortex showed that the resulting intensity change could be very closely approximated by computing the purely symmetric response to the azimuthally averaged heating. The symmetric response to the purely asymmetric part of the heating was found to have a very small and most often negative impact on the intensity of the vortex. This result stands in contrast to many previous studies that used asymmetric vorticity perturbations, which suggested that purely asymmetric forcing could lead to vortex intensification.
The issue is revisited with an improved model and some new methods of analysis. The model equations have been changed to be more consistent with the anelastic approximation, but valid for a radially varying reference state. Expressions for kinetic and available potential energies are presented for both asymmetric and symmetric motions, and these are used to quantify the flow of energy from localized, asymmetric heat sources to kinetic energy of the wind field of the symmetric vortex.
Previous conclusions were based on simulations that used instantaneous temperature perturbations to represent rapid heat release in cumulus updrafts. Purely asymmetric heat sources that evolve over time and move with the local mean wind are shown to also cause vortex weakening. Weakening of the symmetric vortex is due to extraction of energy by the evolving asymmetries that undergo significant transient growth due to downgradient transport of momentum across the radial and vertical shears of the symmetric wind field. While much of this energy is returned during the axisymmetrization of the resulting potential vorticity anomalies, there is typically a net loss of energy for the symmetric vortex. Some variations on the rotation rate and duration of the heat sources can lead to intensification rather than weakening, as does a deeper (more barotropic) vertical structure of the symmetric vortex. However, it is reaffirmed that these asymmetrically forced changes are small compared to the response to the azimuthally averaged heating of an isolated heat source.
Following the work of Hack and Schubert, the efficiency of the intensification process, defined as the ratio of injected heat energy to the kinetic energy change of the symmetric vortex, is computed for vortices of different sizes and strengths. In the limit of small perturbations, the efficiency does not depend on the temporal distribution of the heating. The efficiency is shown to increase with the intensity of the vortex and with the Coriolis parameter, with substantial efficiency increases for weak vortices. Potential applications of these results for predicting tropical cyclone formation and rapid development are discussed.
Abstract
This study evaluates tropical cyclone (TC) rainfall structures in the CMIP6 HighResMIP global climate model (GCM) simulations against satellite rainfall retrievals. We specifically focus on TCs within the deep tropics (25°S–25°N). Analysis of TC rain rate composites indicates that in comparison to the satellite observations at the same intensity, many HighResMIP simulations tend to overproduce rain rates around TCs, in terms of both maximum rain rate magnitude and area-averaged rain rates. In addition, as model horizontal resolution increases, the magnitude of the peak rain rate appears to increase. However, the area-averaged rain rates decrease with increasing horizontal resolution, partly due to the TC eyewall being located closer to the TC center, thus occupying a smaller area and contributing less to the area-averaged rain rates. The effect of ocean coupling is to lower the TC rain rates, bringing them closer to the satellite observations, due to reduced horizontal moisture flux convergence and surface latent heat flux beneath TCs. Examination of horizontal rain rate distributions indicates that vertical wind shear–induced rainfall asymmetries in HighResMIP-simulated TCs are qualitatively consistent with the observations. In addition, a positive relationship is observed between the area-averaged inner-core rainfall and TC intensification likelihoods across the HighResMIP simulations, as GCM simulations producing stronger TCs more frequently have the greater rainfall close to the center, in agreement with previous theoretical and GCM simulation results.
Abstract
This study evaluates tropical cyclone (TC) rainfall structures in the CMIP6 HighResMIP global climate model (GCM) simulations against satellite rainfall retrievals. We specifically focus on TCs within the deep tropics (25°S–25°N). Analysis of TC rain rate composites indicates that in comparison to the satellite observations at the same intensity, many HighResMIP simulations tend to overproduce rain rates around TCs, in terms of both maximum rain rate magnitude and area-averaged rain rates. In addition, as model horizontal resolution increases, the magnitude of the peak rain rate appears to increase. However, the area-averaged rain rates decrease with increasing horizontal resolution, partly due to the TC eyewall being located closer to the TC center, thus occupying a smaller area and contributing less to the area-averaged rain rates. The effect of ocean coupling is to lower the TC rain rates, bringing them closer to the satellite observations, due to reduced horizontal moisture flux convergence and surface latent heat flux beneath TCs. Examination of horizontal rain rate distributions indicates that vertical wind shear–induced rainfall asymmetries in HighResMIP-simulated TCs are qualitatively consistent with the observations. In addition, a positive relationship is observed between the area-averaged inner-core rainfall and TC intensification likelihoods across the HighResMIP simulations, as GCM simulations producing stronger TCs more frequently have the greater rainfall close to the center, in agreement with previous theoretical and GCM simulation results.
Abstract
This study proposes a set of process-oriented diagnostics with the aim of understanding how model physics and numerics control the representation of tropical cyclones (TCs), especially their intensity distribution, in GCMs. Three simulations are made using two 50-km GCMs developed at NOAA’s Geophysical Fluid Dynamics Laboratory. The two models are forced with the observed sea surface temperature [Atmospheric Model version 2.5 (AM2.5) and High Resolution Atmospheric Model (HiRAM)], and in the third simulation, the AM2.5 model is coupled to an ocean GCM [Forecast-Oriented Low Ocean Resolution (FLOR)]. The frequency distributions of maximum near-surface wind near TC centers show that HiRAM tends to develop stronger TCs than the other models do. Large-scale environmental parameters, such as potential intensity, do not explain the differences between HiRAM and the other models. It is found that HiRAM produces a greater amount of precipitation near the TC center, suggesting that associated greater diabatic heating enables TCs to become stronger in HiRAM. HiRAM also shows a greater contrast in relative humidity and surface latent heat flux between the inner and outer regions of TCs. Various fields are composited on precipitation percentiles to reveal the essential character of the interaction among convection, moisture, and surface heat flux. Results show that the moisture sensitivity of convection is higher in HiRAM than in the other model simulations. HiRAM also exhibits a stronger feedback from surface latent heat flux to convection via near-surface wind speed in heavy rain-rate regimes. The results emphasize that the moisture–convection coupling and the surface heat flux feedback are critical processes that affect the intensity of TCs in GCMs.
Abstract
This study proposes a set of process-oriented diagnostics with the aim of understanding how model physics and numerics control the representation of tropical cyclones (TCs), especially their intensity distribution, in GCMs. Three simulations are made using two 50-km GCMs developed at NOAA’s Geophysical Fluid Dynamics Laboratory. The two models are forced with the observed sea surface temperature [Atmospheric Model version 2.5 (AM2.5) and High Resolution Atmospheric Model (HiRAM)], and in the third simulation, the AM2.5 model is coupled to an ocean GCM [Forecast-Oriented Low Ocean Resolution (FLOR)]. The frequency distributions of maximum near-surface wind near TC centers show that HiRAM tends to develop stronger TCs than the other models do. Large-scale environmental parameters, such as potential intensity, do not explain the differences between HiRAM and the other models. It is found that HiRAM produces a greater amount of precipitation near the TC center, suggesting that associated greater diabatic heating enables TCs to become stronger in HiRAM. HiRAM also shows a greater contrast in relative humidity and surface latent heat flux between the inner and outer regions of TCs. Various fields are composited on precipitation percentiles to reveal the essential character of the interaction among convection, moisture, and surface heat flux. Results show that the moisture sensitivity of convection is higher in HiRAM than in the other model simulations. HiRAM also exhibits a stronger feedback from surface latent heat flux to convection via near-surface wind speed in heavy rain-rate regimes. The results emphasize that the moisture–convection coupling and the surface heat flux feedback are critical processes that affect the intensity of TCs in GCMs.
Abstract
Characteristics of tropical cyclones (TCs) in global climate models (GCMs) are known to be influenced by details of the model configurations, including horizontal resolution and parameterization schemes. Understanding model-to-model differences in TC characteristics is a prerequisite for reducing uncertainty in future TC activity projections by GCMs. This study performs a process-level examination of TC structures in eight GCM simulations that span a range of horizontal resolutions from 1° to 0.25°. A recently developed set of process-oriented diagnostics is used to examine the azimuthally averaged wind and thermodynamic structures of the GCM-simulated TCs. Results indicate that the inner-core wind structures of simulated TCs are more strongly constrained by the horizontal resolutions of the models than are the thermodynamic structures of those TCs. As expected, the structures of TC circulations become more realistic with smaller horizontal grid spacing, such that the radii of maximum wind (RMW) become smaller, and the maximum vertical velocities occur off the center. However, the RMWs are still too large, especially at higher intensities, and there are rising motions occurring at the storm centers, inconsistently with observations. The distributions of precipitation, moisture, and radiative and surface turbulent heat fluxes around TCs are diverse, even across models with similar horizontal resolutions. At the same horizontal resolution, models that produce greater rainfall in the inner-core regions tend to simulate stronger TCs. When TCs are weak, the radial gradient of net column radiative flux convergence is comparable to that of surface turbulent heat fluxes, emphasizing the importance of cloud–radiative feedbacks during the early developmental phases of TCs.
Abstract
Characteristics of tropical cyclones (TCs) in global climate models (GCMs) are known to be influenced by details of the model configurations, including horizontal resolution and parameterization schemes. Understanding model-to-model differences in TC characteristics is a prerequisite for reducing uncertainty in future TC activity projections by GCMs. This study performs a process-level examination of TC structures in eight GCM simulations that span a range of horizontal resolutions from 1° to 0.25°. A recently developed set of process-oriented diagnostics is used to examine the azimuthally averaged wind and thermodynamic structures of the GCM-simulated TCs. Results indicate that the inner-core wind structures of simulated TCs are more strongly constrained by the horizontal resolutions of the models than are the thermodynamic structures of those TCs. As expected, the structures of TC circulations become more realistic with smaller horizontal grid spacing, such that the radii of maximum wind (RMW) become smaller, and the maximum vertical velocities occur off the center. However, the RMWs are still too large, especially at higher intensities, and there are rising motions occurring at the storm centers, inconsistently with observations. The distributions of precipitation, moisture, and radiative and surface turbulent heat fluxes around TCs are diverse, even across models with similar horizontal resolutions. At the same horizontal resolution, models that produce greater rainfall in the inner-core regions tend to simulate stronger TCs. When TCs are weak, the radial gradient of net column radiative flux convergence is comparable to that of surface turbulent heat fluxes, emphasizing the importance of cloud–radiative feedbacks during the early developmental phases of TCs.