Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Yun Lin x
  • All content x
Clear All Modify Search
Zhongda Lin and Yun Li

Abstract

Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulations from climate models, have been implicated in this wetting trend. However, the impact of land albedo and aerosols on Australian rainfall remains unclear. In addition, previous studies showed that dominant sea surface temperature (SST) signals in the Pacific–Indian Ocean including El Niño–Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean dipole mode have no significant impact on the NWA rainfall trend. The present study proposes another viewpoint on the remote influence of tropical Atlantic atmospheric vertical motion on the observed rainfall variability and trend in NWA.

It is found that, with the atmospheric ascent instigated by the warming of SST over the tropical Atlantic, a Rossby wave train is emanating southeastward from off the west coast of subtropical South America to the midlatitudes of the South Atlantic Ocean. It then travels eastward embedded in the westerly jet waveguide over the South Atlantic and South Indian Oceans. The eastward-propagated Rossby wave induces an anticyclonic anomaly in the upper troposphere over Australia, which is at the exit of the westerly jet waveguide. This leads to an in situ upper-tropospheric divergence, ascending motion and a lower-tropospheric convergence, and the associated increase in rainfall in NWA. Thus, the increasing trend in atmospheric upward motion induced by the warming trend of SST in the tropical Atlantic may partially explain the observed rainfall trend in NWA.

Full access
Renping Lin, Tianjun Zhou, and Yun Qian

Abstract

With the motivation to identify whether a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data [NCEP–U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project II (AMIP-II) reanalysis (NCEP-2), 40-yr ECMWF Re-Analysis (ERA-40), Japanese 25-yr Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Modern-Era Retrospective Analysis for Research and Applications (MERRA)] in reproducing the climatology, interannual variation, and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. To better understand the variability and long-term trend of GM precipitation, the authors also examined the major components of water budget, including evaporation, water vapor convergence, and the change in local column water vapor, based on the five reanalysis datasets. Results show that all five reanalysis datasets reasonably reproduce the climatology of GM precipitation. ERA-Interim (NCEP-2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979–2011 along with a strong interannual variability, which is reasonably reproduced by five reanalysis datasets. The observed increasing trend of GM precipitation is dominated by contributions from the Asian, North American, Southern African, and Australian monsoons. All five datasets fail in reproducing the increasing tendency of the North African monsoon precipitation. The wind convergence term in the water budget equation dominates the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

Full access
Mong-Ming Lu, Pao-Shin Chu, and Yun-Ching Lin

Abstract

A Poisson generalized linear regression model cast within a Bayesian framework is applied to forecast the seasonal tropical cyclone (TC) counts in the vicinity of Taiwan. The TC season considered is June–November and the data period used for model development is 1979–2007. A stepwise regression procedure is applied for predictor selection. Three large-scale climate variables, namely, relative vorticity at 850 hPa (Vor850), vertical wind shear, and sea level pressure over the western and central North Pacific from the antecedent May, are selected as predictors. Leave-one-out cross validation is performed and forecast skill is thoroughly evaluated. The skill level of the Bayesian regression model is better than what can be achieved by climatology and persistence methods. Most importantly, the Bayesian probabilistic inference can provide an uncertainty expression in the parameter estimation. Among the three predictors, Vor850 is found to be the most important because it reflects the variation of the ridge position of the westward extension of the western Pacific subtropical high. The model shows negative bias during the years with successive TCs, which are generated by easterly waves before approaching Taiwan. Recommendations for real-time operational forecast and future development are discussed.

Full access
Zhiwei Wu, Hai Lin, Yun Li, and Youmin Tang

Abstract

Seasonal killing-frost frequency (KFF) during the cool/overwintering-crop growing season is important for the Canadian agricultural sector to prepare and respond to such extreme agrometeorological events. On the basis of observed daily surface air temperature across Canada for 1957–2007, this study found that more than 86% of the total killing-frost events occur in April–May and exhibit consistent variability over south-central Canada, the country’s major agricultural region. To quantify the KFF year-to-year variations, a simple index is defined as the mean KFF of the 187 temperature stations in south-central Canada. The KFF variability is basically dominated by two components: the decadal component with a peak periodicity around 11 yr and the interannual component of 2.5–3.8 yr. A statistical method called partial least squares (PLS) regression is utilized to uncover principal sea surface temperature (SST) modes in the winter preceding the KFF anomalies. It is found that most of the leading SST modes resemble patterns of El Niño–Southern Oscillation (ENSO) and/or the Pacific decadal oscillation (PDO). This indicates that ENSO and the PDO might be two dominant factors for the KFF variability. From a 41-yr training period (1957–97), a PLS seasonal prediction model is established, and 1-month-lead real-time forecasts are performed for the validation period of 1998–2007. A promising skill level is obtained. For the KFF variability, the prediction skill of the PLS model is comparable to or even better than the newly developed Canadian Seasonal to Interannual Prediction System (CanSIPS), which is a state-of-the-art global coupled dynamical system.

Full access
ZhongDa Lin, Yun Li, Yong Liu, and AiXue Hu

Abstract

Rainfall in southeastern Australia (SEA) decreased substantially in the austral autumn (March–May) of the 1990s and 2000s. The observed autumn rainfall reduction has been linked to the climate change–induced poleward shift of the subtropical dry zone across SEA and natural multidecadal variations. However, the underlying physical processes responsible for the SEA drought are still not fully understood. This study highlights the role of sea surface temperature (SST) warming in the subtropical South Pacific (SSP) in the autumn rainfall reduction in SEA since the early 1990s. The warmer SSP SST enhances rainfall to the northwest in the southern South Pacific convergence zone (SPCZ); the latter triggers a divergent overturning circulation with the subsidence branch over the eastern coast of Australia. As such, the subsidence increases the surface pressure over Australia, intensifies the subtropical ridge, and reduces the rainfall in SEA. This mechanism is further confirmed by the result of a sensitivity experiment using an atmospheric general circulation model. Moreover, this study further indicates that global warming and natural multidecadal variability contribute approximately 44% and 56%, respectively, of the SST warming in the SSP since the early 1990s.

Free access
Yuhui Li, Yun Qiu, Jianyu Hu, Cherry Aung, Xinyu Lin, Chunsheng Jing, and Junpeng Zhang

ABSTRACT

Multisource satellite remote sensing data have been used to analyze the strong upwelling event off the southern coast of Sri Lanka in 2013 and its relationship with Indian Ocean dipole (IOD) events. The upwelling area in 2013 is 5.7 times larger than that in a normal year and lasts from June to August, with the peaks of the cooling anomaly reaching −1.5°C and the positive chlorophyll a concentration anomaly exceeding 3.1 mg m−3. In 2013, the negative unseasonable IOD (IODJJA) event enhances the southwest monsoon, while the blocking of the monsoon wind by the island results in a stronger westerly/northwesterly wind stress off the southern coast of Sri Lanka and a weaker westerly/northwesterly wind stress over the eastern Sri Lanka waters. This causes stronger offshore transport and positive Ekman pumping off the southern coast, forming a strong upwelling event there. Further analysis indicates that the interannual variability of the upwelling, as represented by a newly constructed index based on satellite observations, is primarily caused by the variations of local wind associated with the IOD. The upwelling off the southern coast of Sri Lanka weakens (strengthens) in the positive (negative) IOD years. However, an analysis based on 21 IOD events during 1982–2019 demonstrates that the effects of the three types of IOD events, including IODJJA, prolonged IOD (IODLONG), and normal IOD (IODSON), on the upwelling are different. Compared to the IODSON events, the IODJJA and IODLONG events tend to have stronger influences due to their earlier developing phases.

Restricted access
Yuh-Lang Lin, Heather Dawn Reeves, Shu-Yun Chen, and Sen Chiao

Abstract

The dynamical impacts of an unusually strong stable layer that developed over the Po Valley and northern Ligurian Sea during Mesoscale Alpine Program (MAP) intensive observation period 8 (IOP-8) on the formation of convection over the Ligurian Sea are explored. Based on numerically simulated equivalent potential temperature, wind vectors, and by a trajectory analysis of parcels both beneath and above the stable layer, it is shown that the stable layer behaved as a material surface or “effective mountain” to the airstreams impinging on it from the south. Additional analyses show that the leading edge of the stable layer was collocated with maxima in upward motion and a strong positive moisture flux. Hence, it was further argued and demonstrated through inspection of soundings upstream of the cold dome and trajectory analyses that lifting by the stable layer enhanced convective activities over the Ligurian Sea. Finally, processes contributing to the maintenance of the stable layer during IOP-8 were explored. It was found that the differential advection of a warm, less stable air mass on top of a cooler, more stable air mass helped maintain the stable layer. The Ligurian Apennines made a secondary contribution to the stagnation of the cool air in the Po Valley by partially blocking this air mass from exiting the valley to the south.

Full access
Yun Lin, Jiwen Fan, Jong-Hoon Jeong, Yuwei Zhang, Cameron R. Homeyer, and Jingyu Wang

Abstract

Changes in land surface and aerosol characteristics from urbanization can affect dynamic and microphysical properties of severe storms, thus affecting hazardous weather events resulting from these storms such as hail and tornadoes. We examine the joint and individual effects of urban land and anthropogenic aerosols of Kansas City on a severe convective storm observed during the 2015 Plains Elevated Convection At Night (PECAN) field campaign, focusing on storm evolution, convective intensity, and hail characteristics. The simulations are carried out at the cloud-resolving scale (1 km) using a version of WRF-Chem in which the spectral-bin microphysics (SBM) is coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). It is found that the urban land effect of Kansas City initiated a much stronger convective cell and the storm got further intensified when interacting with stronger turbulence induced by the urban land. The urban land effect also changed the storm path by diverting the storm toward the city, mainly resulting from enhanced urban land-induced convergence in the urban area and around the urban–rural boundaries. The joint effect of urban land and anthropogenic aerosols enhances occurrences of both severe hail and significant severe hail by ~20% by enhancing hail formation and growth from riming. Overall the urban land effect on convective intensity and hail is relatively larger than the anthropogenic aerosol effect, but the joint effect is more notable than either of the individual effects, emphasizing the importance of considering both effects in evaluating urbanization effects.

Restricted access
Yuh-Lang Lin, Shu-Yun Chen, Christopher M. Hill, and Ching-Yuang Huang

Abstract

In this study prospective control parameters are identified for diagnosing the continuity and deflection of cyclone tracks across a mesoscale mountain range. Based on idealized simulations of a westward-moving cyclone, it was found that the cyclone track becomes a discontinuous (continuous) track and the cyclone experiences more (less) deflection with a combination of small (large) values of V max/Nh, U/Nh, R/Ly, U/fLx, and V max/fR, and large (small) value of h/Lx. The symbols are defined as follows: V max the maximum tangential wind, N the Brunt–Väisälä frequency, h the mountain height, U the basic wind speed, R the radius of V max, f the Coriolis parameter, and Lx and Ly the horizontal scales of the mountain in x and y directions, respectively.

A conceptual model is proposed to explain track deflection and continuity for a westward-moving cyclone encountering idealized topography representative of the Central Mountain Range of Taiwan. With weak orographic blocking, a cyclone crosses over the mountain range with some northward deflection. With moderate orographic blocking, northward deflection of a cyclone is greater upstream of the mountain range and a secondary, leeside vortex forms to the southwest of the mountain range, indicative of discontinuity in the cyclone track. With strong orographic blocking, a westward-moving cyclone is deflected southward and a secondary cyclone forms to the northwest of the mountain range. The northward or southward deflection of a cyclone track is explained by the orographic blocking on the outer circulation of the cyclone.

Full access
Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Yangang Liu, and Renyi Zhang

Abstract

A continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudiness for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. The results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.

Full access