Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yuxin Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Yuxin Zhao, Dequan Yang, Wei Li, Chang Liu, Xiong Deng, Rixu Hao, and Zhongjie He

Abstract

A spatiotemporal empirical orthogonal function (STEOF) forecast method is proposed and used in medium- to long-term sea surface height anomaly (SSHA) forecast. This method embeds temporal information in empirical orthogonal function spatial patterns, effectively capturing the evolving spatial distribution of variables and avoiding the typical rapid accumulation of forecast errors. The forecast experiments are carried out for SSHA in the South China Sea to evaluate the proposed model. Experimental results demonstrate that the STEOF forecast method consistently outperforms the autoregressive integrated moving average (ARIMA), optimal climatic normal (OCN), and persistence prediction. The model accurately forecasts the intensity and location of ocean eddies, indicating its great potential for practical applications in medium- to long-term ocean forecasts.

Restricted access
Xuefeng Zhang, Peter C. Chu, Wei Li, Chang Liu, Lianxin Zhang, Caixia Shao, Xiaoshuang Zhang, Guofang Chao, and Yuxin Zhao

Abstract

Langmuir turbulence (LT) due to the Craik–Leibovich vortex force had a clear impact on the thermal response of the ocean mixed layer to Supertyphoon Haitang (2005) east of the Luzon Strait. This impact is investigated using a 3D wave–current coupled framework consisting of the Princeton Ocean Model with the generalized coordinate system (POMgcs) and the Simulating Waves Nearshore (SWAN) wave model. The Coriolis–Stokes forcing (CSF), the Craik–Leibovich vortex forcing (CLVF), and the second-moment closure model of LT developed by Harcourt are introduced into the circulation model. The coupled system is able to reproduce the upper-ocean temperature and surface mixed layer depth reasonably well during the forced stage of the supertyphoon. The typhoon-induced “cold suction” and “heat pump” processes are significantly affected by LT. Local LT mixing strengthened the sea surface cooling by more than 0.5°C in most typhoon-affected regions. Besides LT, Lagrangian advection of temperature also modulates the SST cooling, inducing a negative (positive) SST difference in the vicinity of the typhoon center (outside of the cooling region). In addition, CLVF has the same order of magnitude as the horizontal advection in the typhoon-induced strong-vorticity region. While the geostrophy is broken down during the forced stage of Haitang, CLVF can help establish and maintain typhoon-induced quasigeostrophy during and after the typhoon. Finally, the effect of LT on the countergradient turbulent flux under the supertyphoon is discussed.

Full access