Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Yuyun Liu x
  • All content x
Clear All Modify Search
Peiqiang Xu, Lin Wang, Wen Chen, Juan Feng, and Yuyun Liu

Abstract

The Pacific–Japan (PJ) pattern, also known as the East Asia–Pacific pattern, is a teleconnection that significantly influences the East Asian summer climate on various time scales. Based on several reanalysis and observational datasets, this study suggests that the PJ pattern has experienced a distinct three-dimensional structural change in the late 1990s. Compared with those during 1979–98, the PJ pattern shifts eastward by approximately 20° during 1999–2015, and the intensity of its barotropic structure in the extratropics weakens significantly. As a result, its influences on the summer rainfall along the mei-yu band are weakened after the late 1990s. These observed changes can be attributed to three reasons. First, the location where the PJ pattern is excited shifts eastward. Second, the easterly shear of the background wind is very weak around the source region of the PJ pattern after the late 1990s, which prevents the convection-induced baroclinic mode from converting into barotropic mode and thereby from propagating into the extratropics. Third, the PJ pattern–induced rainfall anomalies are weak along the mei-yu band after the late 1990s. As a result, their feedbacks to the PJ pattern become weak and play a considerably reduced role in maintaining the structure of the PJ pattern in the midlatitudes. In contrast, the eddy energy conversion from the basic flow efficiently maintains the PJ pattern before and after the late 1990s and thereby contributes little to the observed change.

Full access
Peng Hu, Wen Chen, Shangfeng Chen, Yuyun Liu, and Ruping Huang

Abstract

The El Niño–Southern Oscillation (ENSO) is regarded as one of the most important factors for onset of the South China Sea summer monsoon (SCSSM). Previous studies generally indicated that an El Niño event tends to result in a late onset of the SCSSM monsoon. However, this relationship has not been true in recent years, particularly when an extremely early SCSSM onset (1 May 2019) occurred following the 2018/19 El Niño event in the preceding winter. The processes of the second earliest SCSSM onset in the past 41 years were investigated using NCEP–DOE reanalysis, OLR data, and ERSST. A negative sea surface temperature and associated anticyclonic anomalies were absent over the western North Pacific in the late spring of 2019 following an El Niño event in the preceding winter. Thus, the mean circulation in the late spring of 2019 does not prevent SCSSM onset, which is in sharp contrast to the composited spring of the El Niño decaying years. The convective active and westerly phases of a 30–60-day oscillation originating from the Indian Ocean provided a favorable background for the SCSSM onset in 2019. In addition, the monsoon onset vortex over the Bay of Bengal and the cold front associated with a midlatitude trough over East Asia also played important roles in triggering the early onset of the SCSSM in 2019. No tropical cyclone appeared over the western North Pacific during April and May, and the enhancement of quasi-biweekly oscillation mainly occurs after the SCSSM onset; thus, these two factors contribute little to the SCSSM onset in 2019.

Restricted access