Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Yves Chartier x
  • Refine by Access: All Content x
Clear All Modify Search
Robert Benoit, Michel Desgagné, Pierre Pellerin, Simon Pellerin, Yves Chartier, and Serge Desjardins

Abstract

This paper attempts to document the developmental research and early mesoscale results of the new fully nonhydrostatic atmospheric model called MC2 (mesoscale compressible community). Its numerical scheme is the semi-implicit semi-Lagrangian approach conceived and demonstrated by Tanguay, Robert, and Laprise. The dominant effort required to become a full-fledged mesoscale model was to connect it properly to a full-scale and evolving physics package; the enlarged scope of a package previously dedicated to hydrostatic pressure coordinate-type models posed some new questions. The one-way nesting is reviewed and particularly the self-nesting or cascade mode; the potential implication of this mode is explored with a stand-alone forecast experiment and related to the other existing approach employing hemispheric or global variable meshes. One of the strong assets of MC2 is its growing community of users and developers. To demonstrate the wideband characteristic of MC2, that is, its applicability to a large range of atmospheric flows, two very different cases are studied: an Atlantic winter East Coast cyclogenesis (meso-α scale, mostly hydrostatic) and a local (meso-γ scale, partly nonhydrostatic) downslope windstorm occuring over unexpectedly modest topography (Cape Breton Highlands of Nova Scotia, Canada).

Full access