Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Z. Zhu x
  • All content x
Clear All Modify Search
Z. Q. Fan, Z. Sheng, H. Q. Shi, X. Yi, Y. Jiang, and E. Z. Zhu


The accuracy of temperature data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation and Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observation over China is analyzed. High-resolution sounding data are used to assess the accuracy of these two kinds of satellite observation data at corresponding heights, and the two sets of data are compared in the height range 15–40 km. Very good agreement between radiosondes and COSMIC is observed in the stratosphere. In the troposphere COSMIC temperatures are about 2 K higher than the radiosonde observations. SABER detection at 15–32 km agrees well with a maximum warm bias of ~2 K around 25-km altitude. The comparison between SABER and COSMIC for altitudes 15–40 km also indicates higher temperatures of SABER in the lower stratosphere. The standard deviations are all greater than 2.5 K and are larger near 15 km and smallest at 20 km. The temperature deviation and in particular the standard deviation comparing SABER and COSMIC changes with altitude, season, and latitude. The results of this comparative assessment can offer a basis for research into the application of COSMIC and TIMED/SABER over China.

Full access
M. Zhang, A. Mariotti, Z. Lin, V. Ramasmamy, J. Lamarque, Z. Xie, and J. Zhu
Open access
A. Anav, P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais, P. Cox, C. Jones, M. Jung, R. Myneni, and Z. Zhu


The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for climate projections, and such evaluation allows identification of the strengths and weaknesses of individual coupled carbon–climate models as well as identification of systematic biases of the models. Results show that models correctly reproduce the main climatic variables controlling the spatial and temporal characteristics of the carbon cycle. The seasonal evolution of the variables under examination is well captured. However, weaknesses appear when reproducing specific fields: in particular, considering the land carbon cycle, a general overestimation of photosynthesis and leaf area index is found for most of the models, while the ocean evaluation shows that quite a few models underestimate the primary production.The authors also propose climate and carbon cycle performance metrics in order to assess whether there is a set of consistently better models for reproducing the carbon cycle. Averaged seasonal cycles and probability density functions (PDFs) calculated from model simulations are compared with the corresponding seasonal cycles and PDFs from different observed datasets. Although the metrics used in this study allow identification of some models as better or worse than the average, the ranking of this study is partially subjective because of the choice of the variables under examination and also can be sensitive to the choice of reference data. In addition, it was found that the model performances show significant regional variations.

Full access
C. P. Weaver, X.-Z. Liang, J. Zhu, P. J. Adams, P. Amar, J. Avise, M. Caughey, J. Chen, R. C. Cohen, E. Cooter, J. P. Dawson, R. Gilliam, A. Gilliland, A. H. Goldstein, A. Grambsch, D. Grano, A. Guenther, W. I. Gustafson, R. A. Harley, S. He, B. Hemming, C. Hogrefe, H.-C. Huang, S. W. Hunt, D.J. Jacob, P. L. Kinney, K. Kunkel, J.-F. Lamarque, B. Lamb, N. K. Larkin, L. R. Leung, K.-J. Liao, J.-T. Lin, B. H. Lynn, K. Manomaiphiboon, C. Mass, D. McKenzie, L. J. Mickley, S. M. O'neill, C. Nolte, S. N. Pandis, P. N. Racherla, C. Rosenzweig, A. G. Russell, E. Salathé, A. L. Steiner, E. Tagaris, Z. Tao, S. Tonse, C. Wiedinmyer, A. Williams, D. A. Winner, J.-H. Woo, S. WU, and D. J. Wuebbles

This paper provides a synthesis of results that have emerged from recent modeling studies of the potential sensitivity of U.S. regional ozone (O3) concentrations to global climate change (ca. 2050). This research has been carried out under the auspices of an ongoing U.S. Environmental Protection Agency (EPA) assessment effort to increase scientific understanding of the multiple complex interactions among climate, emissions, atmospheric chemistry, and air quality. The ultimate goal is to enhance the ability of air quality managers to consider global change in their decisions through improved characterization of the potential effects of global change on air quality, including O3 The results discussed here are interim, representing the first phase of the EPA assessment. The aim in this first phase was to consider the effects of climate change alone on air quality, without accompanying changes in anthropogenic emissions of precursor pollutants. Across all of the modeling experiments carried out by the different groups, simulated global climate change causes increases of a few to several parts per billion (ppb) in summertime mean maximum daily 8-h average O3 concentrations over substantial regions of the country. The different modeling experiments in general do not, however, simulate the same regional patterns of change. These differences seem to result largely from variations in the simulated patterns of changes in key meteorological drivers, such as temperature and surface insolation. How isoprene nitrate chemistry is represented in the different modeling systems is an additional critical factor in the simulated O3 response to climate change.

Full access
Tim Li, Abdallah Abida, Laura S. Aldeco, Eric J. Alfaro, Lincoln M. Alves, Jorge A. Amador, B. Andrade, Julian Baez, M. Yu. Bardin, Endalkachew Bekele, Eric Broedel, Brandon Bukunt, Blanca Calderón, Jayaka D. Campbell, Diego A. Campos Diaz, Gilma Carvajal, Elise Chandler, Vincent. Y. S. Cheng, Chulwoon Choi, Leonardo A. Clarke, Kris Correa, Felipe Costa, A. P. Cunha, Mesut Demircan, R. Dhurmea, Eliecer A. Díaz, M. ElKharrim, Bantwale D. Enyew, Jhan C. Espinoza, Amin Fazl-Kazem, Nava Fedaeff, Z. Feng, Chris Fenimore, S. D. Francis, Karin Gleason, Charles “Chip” P. Guard, Indra Gustari, S. Hagos, Richard R. Heim Jr., Rafael Hernández, Hugo G. Hidalgo, J. A. Ijampy, Annie C. Joseph, Guillaume Jumaux, Khadija Kabidi, Johannes W. Kaiser, Pierre-Honore Kamsu-Tamo, John Kennedy, Valentina Khan, Mai Van Khiem, Khatuna Kokosadze, Natalia N. Korshunova, Andries C. Kruger, Nato Kutaladze, L. Labbé, Mónika Lakatos, Hoang Phuc Lam, Mark A. Lander, Waldo Lavado-Casimiro, T. C. Lee, Kinson H. Y. Leung, Andrew D. Magee, Jostein Mamen, José A. Marengo, Dora Marín, Charlotte McBride, Lia Megrelidze, Noelia Misevicius, Y. Mochizuki, Aurel Moise, Jorge Molina-Carpio, Natali Mora, Awatif E. Mostafa, uan José Nieto, Lamjav Oyunjargal, Reynaldo Pascual Ramírez, Maria Asuncion Pastor Saavedra, Uwe Pfeifroth, David Phillips, Madhavan Rajeevan, Andrea M. Ramos, Jayashree V. Revadekar, Miliaritiana Robjhon, Ernesto Rodriguez Camino, Esteban Rodriguez Guisado, Josyane Ronchail, Benjamin Rösner, Roberto Salinas, Amal Sayouri, Carl J. Schreck III, Serhat Sensoy, A. Shimpo, Fatou Sima, Adam Smith, Jacqueline Spence, Sandra Spillane, Arne Spitzer, A. K. Srivastava, José L. Stella, Kimberly A. Stephenson, Tannecia S. Stephenson, Michael A. Taylor, Wassila Thiaw, Skie Tobin, Dennis Todey, Katja Trachte, Adrian R. Trotman, Gerard van der Schrier, Cedric J. Van Meerbeeck, Ahad Vazifeh, José Vicencio Veloso, Wei Wang, Fei Xin, Peiqun Zhang, Zhiwei Zhu, and Jonas Zucule
Full access