Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Zhaohui Chen x
  • All content x
Clear All Modify Search
Zhaohui Chen and Lixin Wu

Abstract

The seasonal variation of the South Equatorial Current (SEC) bifurcation off the Australian coast in the South Pacific (SP) is investigated with observations and a nonlinear, reduced-gravity, primitive equation model of the upper ocean. The mean SEC bifurcation latitude (SBL) integrated over the upper thermocline is around 17.5°S, almost 2° south of the position predicted by Sverdrup theory. For its seasonal variation, the SBL reaches its southernmost position in June/July and its northernmost position in November/December. The south–north migration of 2.7° is twice as large as its counterpart in the North Pacific. It is found that the large seasonal amplitude of the SBL results from the combined effect of Low-Lat-SP and Non-Low-Lat-SP processes. The Low-Lat-SP process (referred to as the Rossby wave dynamics forced by the wind stress curl over the low-latitude SP) accounts for almost ⅔ of the SBL seasonal variability, and the Non-Low-Lat-SP processes account for ⅓. Both of these processes are responsible for its south–north migration but in different ways. The Low-Lat-SP wind forcing determines the offshore upper-layer thickness (ULT) via Rossby wave propagation, while the Non-Low-Lat-SP wind forcing determines the alongshore ULT via coastal Kelvin wave propagation. A simple bifurcation model is proposed under the framework of linear Rossby wave dynamics. It is found that the seasonal bifurcation latitude is predominantly determined by the spatial pattern of the wind and baroclinic Rossby wave propagation. This model explains the roles of local/remote wind forcing and baroclinic adjustment in the south–north migration and peak seasons of the bifurcation latitude.

Full access
Haiyuan Yang, Lixin Wu, Shantong Sun, and Zhaohui Chen

Abstract

The role of the South China Sea (SCS) in regulating the North Pacific circulation is investigated using a two-layer quasigeostrophic (QG) model. The double-gyre circulations in the North Pacific with and without the SCS are compared and analyzed. It is found that the SCS acts as a sink of both potential vorticity (PV) and energy in the Pacific–SCS system for the mean state. Consequently, the Kuroshio and the upstream Kuroshio Extension (KE) are weaker in the presence of the SCS. Moreover, the eddy activity is also lower in the North Pacific Ocean because the barotropic instability is suppressed for a weaker circulation. In terms of low-frequency variations at interannual to decadal time scale, the presence of the SCS is found to enhance the variability of the latitudinal position and intensity of the KE jet. This is explained by a positive feedback process that is associated with the negative correlation between the inertia of the Kuroshio and its intrusion into the SCS.

Full access
Haiyuan Yang, Lixin Wu, Sun Shantong, and Chen Zhaohui

Abstract

The interannual variability of the upper-ocean circulation forced by seasonally varying monsoonal wind is investigated in a two-layer quasigeostrophic (QG) model, with the aim to understand the low-frequency variability of the South China Sea (SCS) circulation. It is demonstrated that the seasonally varying monsoonal wind can force the upper-ocean circulation with significant internal variability, which is mainly associated with the intrinsic nonlinear dynamics of the summer double-gyre system. This arises from the fact that the intrinsic variability, characterized by the Rossby wave adjustment in the winter single-gyre system, is much weaker than that in the summer double-gyre system driven by the intergyre eddy potential vorticity flux through barotropic instability.

Full access
Haiyuan Yang, Lixin Wu, Shantong Sun, and Zhaohui Chen

Abstract

The response of the South China Sea (SCS) circulation to intraseasonal variability of the summer monsoon is studied with both observations and a 1.5-layer reduced-gravity model. Intraseasonal variability of the SCS summer monsoon is characterized by evolution of the wind jet intensity in the midbasin with typical amplitude of 6 m s−1 and several peaks on its power spectrum between 10 and 60 days. However, this study finds that intraseasonal variability of the sea surface height (SSH) in the SCS presents significant variability to the southeast of Vietnam with amplitude of 6 cm and a period only between 40 and 60 days. This implicates the frequency selectivity of oceanic response to wind forcing. Numerical experiments suggest that the intrinsic variability of the SCS circulation accounts for this phenomenon. Based on the Rossby basin mode theory, this is explained by the interaction between the long, westward-propagating Rossby waves and the short, eastward-propagating Rossby waves.

Full access
Zhaohui Chen, Lixin Wu, Bo Qiu, Shantong Sun, and Fan Jia

Abstract

In this paper, seasonal variation of the South Equatorial Current (SEC) bifurcation off the Madagascar coast in the upper south Indian Ocean (SIO) is investigated based on a new climatology derived from the World Ocean Database and 19-year satellite altimeter observations. The mean bifurcation integrated over the upper thermocline is around 18°S and reaches the southernmost position in June/July and the northernmost position in November/December, with a north–south amplitude of about 1°. It is demonstrated that the linear, reduced gravity, long Rossby model, which works well for the North Equatorial Current (NEC) bifurcation in the North Pacific, is insufficient to reproduce the seasonal cycle and the mean position of the SEC bifurcation off the Madagascar coast. This suggests the importance of Madagascar in regulating the SEC bifurcation. Application of Godfrey’s island rule reveals that compared to the zero Sverdrup transport latitude, the mean SEC bifurcation is shifted poleward by over 0.8° because of the meridional transport of about 5 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) between Madagascar and Australia. A time-dependent linear model that extends the Godfrey’s island rule is adopted to examine the seasonal variation of the SEC bifurcation. This time-dependent island rule model simulates the seasonal SEC bifurcation well both in terms of its mean position and peak seasons. It provides a dynamic framework to clarify the baroclinic adjustment processes involved in the presence of an island.

Full access
Ruichen Zhu, Zhaohui Chen, Zhiwei Zhang, Haiyuan Yang, and Lixin Wu

Abstract

Subthermocline eddies (STEs), also termed intrathermocline eddies or submesoscale coherent vortices, are lens-shaped eddies with anomalous water properties located in or below the thermocline. Although STEs have been discovered in many parts of the World Ocean, most of them were observed accidentally in hydrographic profiles, and direct velocity measurements are very rare. In this study, dynamic features of STEs in the Kuroshio Extension (KE) region are examined in detail using concurrent temperature/salinity and velocity measurements from mooring arrays. During the moored observation periods of 2004–06 and 2015–19, 11 single-core STEs, including 8 with warm/salty cores and 3 with cold/fresh cores, were captured. The thermohaline properties in their cores suggest that these STEs may originate from the subarctic front and the upstream Kuroshio south of Japan. The estimated radius of these STEs varied from 8 to 66 km with the mean value of ~30 km. The warm/salty STEs seemed to be larger and rotate faster than the cold/fresh ones. In addition to single-core STEs, a dual-core STE was observed in the KE recirculation region, which showed that the upper cold/fresh cores stacked vertically over the lower warm/salty cores. Based on the observed parameters of the STEs, their Rossby number and Burger number were further estimated, with values up to 0.5 and 1, respectively. Furthermore, a low Richardson number O (0.25) was found at the periphery of these STEs, suggesting that shear instability-induced turbulent mixing may be an erosion route for the STEs.

Restricted access
Haiyuan Yang, Ping Chang, Bo Qiu, Qiuying Zhang, Lixin Wu, Zhaohui Chen, and Hong Wang

ABSTRACT

Using the high-resolution Community Earth System Model (CESM) output, this study investigates air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension (KE) region. Based on an eddy energetics analysis, it is found that the baroclinic pathway associated with temperature variability is the main eddy energy source in this region. Both the air–sea heat flux and wind stress act as eddy killers that remove energy from oceanic eddies. Heat exchange between atmosphere and oceanic eddies dominates the dissipation of eddy temperature variance within the surface layer and accounts for 36% of the total dissipation in the upper 350-m layer. Compared to the heat exchange, the role of wind power in damping the eddy kinetic energy (EKE) is relatively small. Only 18% of EKE dissipation in the upper 350 m is attributed to eddy wind power. Misrepresentation of the damping role of mesoscale ocean–atmosphere interaction can result in an incorrect vertical structure of eddy energy dissipation, leading to an erroneous representation of vertical mixing in the interior ocean.

Full access
Shengpeng Wang, Zhao Jing, Qiuying Zhang, Ping Chang, Zhaohui Chen, Hailong Liu, and Lixin Wu

Abstract

In this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (L e) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than L e, respectively. Surface wind power on geostrophic flow results in a significant EKE loss around L e but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at L e while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.

Full access
Haiyuan Yang, Lixin Wu, Ping Chang, Bo Qiu, Zhao Jing, Qiuying Zhang, and Zhaohui Chen

Abstract

Using eddy-resolving Community Earth System Model (CESM) simulations, this study investigates mesoscale energetics and air-sea interaction at two different time-scale windows in the Kuroshio Extension (KE) region. Based on an energy budget analysis, it is found that both baroclinic and barotropic pathways contribute to eddy energy generation within the low-frequency window (longer than 3 weeks) in this region, while both air-sea heat fluxes and wind stresses act as prominent eddy killers that remove energy from ocean. In contrast, within the high-frequency window oceanic variability is mainly fed by baroclinic instability and regulated by turbulent thermal wind (TTW) processes, while the positive wind work is derived primarily from ageostrophic flow, i.e., Ekman drift, and along with air-sea heat fluxes has little influence on geostrophic mesoscale eddies.

Restricted access
Dunxin Hu, Shijian Hu, Lixin Wu, Lei Li, Linlin Zhang, Xinyuan Diao, Zhaohui Chen, Yuanlong Li, Fan Wang, and Dongliang Yuan

Abstract

The Luzon Undercurrent (LUC) was discovered about 20 years ago by geostrophic calculation from conductivity–temperature–depth (CTD) data. But it was not directly measured until 2010. From November 2010 to July 2011, the LUC was first directly measured by acoustic Doppler current profiler (ADCP) from a subsurface mooring at 18.0°N, 122.7°E to the east of Luzon Island. A number of new features of the LUC were identified from the measurements of the current. Its depth covers a range from 400 m to deeper than 700 m. The observed maximum velocity of the LUC, centered at about 650 m, could exceed 27.5 cm s−1, four times stronger than the one derived from previous geostrophic calculation with hydrographic data. According to the time series available, the seasonality of the LUC strength is in winter > summer > spring. Significant intraseasonal variability (ISV; 70–80 days) of the LUC is exposed. Evidence exists to suggest that a large portion of the intraseasonal variability in the LUC is related to the westward propagation of mesoscale eddies from the east of the mooring site.

Full access