Search Results

You are looking at 1 - 10 of 35 items for

  • Author or Editor: Zhe Feng x
  • Refine by Access: All Content x
Clear All Modify Search
Zhe Feng, Xiquan Dong, and Baike Xi

Abstract

A decade of collocated Atmospheric Radiation Measurement Program (ARM) 35-GHz Millimeter Cloud Radar (MMCR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data over the ARM Southern Great Plains (SGP) site have been collected during the period of 1997–2006. A total of 28 winter and 45 summer deep convective system (DCS) cases over the ARM SGP site have been selected for this study during the 10-yr period. For the winter cases, the MMCR reflectivity, on average, is only 0.2 dB lower than that of the WSR-88D, with a correlation coefficient of 0.85. This result indicates that the MMCR signals have not been attenuated for ice-phase convective clouds, and the MMCR reflectivity measurements agree well with the WSR-88D, regardless of their vastly different characteristics. For the summer nonprecipitating convective clouds, however, the MMCR reflectivity, on average, is 10.6 dB lower than the WSR-88D measurement, and the average differences between the two radar reflectivities are nearly constant with height above cloud base. Three lookup tables with Mie calculations have been generated for correcting the MMCR signal attenuation. After applying attenuation correction for the MMCR reflectivity measurements, the averaged difference between the two radars has been reduced to 9.1 dB. Within the common sensitivity range (−10 to 20 dBZ), the mean differences for the uncorrected and corrected MMCR reflectivities have been reduced to 6.2 and 5.3 dB, respectively. The corrected MMCR reflectivities were then merged with the WSR-88D data to fill in the gaps during the heavy precipitation periods. This merged dataset provides a more complete radar reflectivity profile for studying convective systems associated with heavier precipitation than the original MMCR dataset. It also provides the intensity, duration, and frequency of the convective systems as they propagate over the ARM SGP for climate modelers. Eventually, it will be possible to improve understanding of the cloud-precipitation processes, and evaluate GCM predictions using the long-term merged dataset, which could not have been done with either the MMCR or the WSR-88D dataset alone.

Full access
Huancui Hu, L. Ruby Leung, and Zhe Feng

ABSTRACT

Warm-season rainfall associated with mesoscale convective systems (MCSs) in the central United States is characterized by higher intensity and nocturnal timing compared to rainfall from non-MCS systems, suggesting their potentially different footprints on the land surface. To differentiate the impacts of MCS and non-MCS rainfall on the surface water balance, a water tracer tool embedded in the Noah land surface model with multiparameterization options (WT-Noah-MP) is used to numerically “tag” water from MCS and non-MCS rainfall separately during April–August (1997–2018) and track their transit in the terrestrial system. From the water-tagging results, over 50% of warm-season rainfall leaves the surface–subsurface system through evapotranspiration by the end of August, but non-MCS rainfall contributes a larger fraction. However, MCS rainfall plays a more important role in generating surface runoff. These differences are mostly attributed to the rainfall intensity differences. The higher-intensity MCS rainfall tends to produce more surface runoff through infiltration excess flow and drives a deeper penetration of the rainwater into the soil. Over 70% of the top 10th percentile runoff is contributed by MCS rainfall, demonstrating its important contribution to local flooding. In contrast, lower-intensity non-MCS rainfall resides mostly in the top layer and contributes more to evapotranspiration through soil evaporation. Diurnal timing of rainfall has negligible effects on the flux partitioning for both MCS and non-MCS rainfall. Differences in soil moisture profiles for MCS and non-MCS rainfall and the resultant evapotranspiration suggest differences in their roles in soil moisture–precipitation feedbacks and ecohydrology.

Free access
Nana Liu, L. Ruby Leung, and Zhe Feng

Abstract

The distribution of latent heating released by mesoscale convective systems (MCSs) plays a crucial role in global energy and water cycles. To investigate the characteristics of MCS latent heating, five years (2014–19) of Global Precipitation Measurement (GPM) Ku-band Precipitation Radar observations and latent heating retrievals are combined with a newly developed global high-resolution (~10 km, hourly) MCS tracking dataset. The results suggest that midlatitude MCSs are shallower and have a lower maximum precipitation rate than tropical MCSs. However, MCSs occurring in the midlatitudes have larger precipitation areas and higher stratiform rain volume fraction, in agreement with previous studies. With substantial spatial and seasonal variability, MCS latent heating profiles are top-heavier in the middle and high latitudes than those in the tropics. Larger magnitudes of latent heating in the stratiform regions are found over the ocean than over land, which is the case for both the tropics and midlatitudes. The larger magnitude is related to a larger precipitating area/volume rather than a higher storm height or more intense convective core typically associated with land systems. A majority of midlatitude MCSs have a relatively high (>70%) stratiform fraction while this is not the case for tropical MCSs, suggesting that midlatitude MCSs tend to produce more stratiform rain while tropical MCSs are more convective. Importantly, the results of this study indicate that storm intensity, latent heating, and rainfall are different metrics of MCSs that can provide multiple constraints to inform development of convection parameterizations in global models.

Restricted access
Nana Liu, L. Ruby Leung, and Zhe Feng

Abstract

The distribution of latent heating released by Mesoscale Convective Systems (MCSs) plays a crucial role in global energy and water cycles. To investigate the characteristics of MCS latent heating, five years (2014-2019) of Global Precipitation Measurement (GPM) Ku-band Precipitation Radar observations and latent heating retrievals are combined with a newly developed global high-resolution (~10 km, hourly) MCS tracking dataset. The results suggest that mid-latitude MCSs are shallower and have a lower maximum precipitation rate than tropical MCSs. However, MCSs occurring in the mid-latitudes have larger precipitation areas and higher stratiform rain volume fraction, in agreement with previous studies. With substantial spatial and seasonal variability, MCS latent heating profiles are top-heavier in the middle and high latitudes than those in the tropics. Larger magnitudes of latent heating in the stratiform regions are found over the ocean than over land, which is the case for both the tropics and mid-latitudes. The larger magnitude is related to a larger precipitating area/volume rather than a higher storm height or more intense convective core typically associated with land systems. A majority of mid-latitude MCSs have a relatively high (> 70%) stratiform fraction while this is not the case for tropical MCSs, suggesting that mid-latitude MCSs tend to produce more stratiform rain while tropical MCSs are more convective. Importantly, the results of this study indicate that storm intensity, latent heating, and rainfall are different metrics of MCSs that can provide multiple constraints to inform development of convection parameterizations in global models.

Restricted access
Xingchao Chen, L. Ruby Leung, Zhe Feng, and Fengfei Song

Abstract

Convective vertical transport is critical in the monsoonal overturning, but the relative roles of different convective systems are not well understood. This study used a cloud classification and tracking technique to decompose a convection-permitting simulation of the South Asian summer monsoon (SASM) into subregimes of mesoscale convective systems (MCSs), non-MCS deep convection (non-MCS), congestus, and shallow convection/clear sky. Isentropic analysis is adopted to quantify the contributions of different convective systems to the total SASM vertical mass, water, and energy transports. The results underscore the crucial roles of MCSs in the SASM vertical transports. Compared to non-MCSs, the total mass and energy transports by MCSs are at least 1.5 times stronger throughout the troposphere, with a larger contributing fraction from convective updrafts compared to upward motion in stratiform regions. Occurrence frequency of non-MCSs is around 40 times higher than that of MCSs. However, per instantaneous convection features, the vertical transports and net moist static energy (MSE) exported by MCSs are about 70–100 and 58 times stronger than that of non-MCSs. While these differences are dominantly contributed by differences in the per-feature MCS and non-MCS area coverage, MCSs also show stronger transport intensities than non-MCSs over both ocean and land. Oceanic MCSs and non-MCSs show more obvious top-heavy structures than their inland counterparts, which are closely related to the widespread stratiform over ocean. Compared to the monsoon break phase, MCSs occur more frequently (~1.6 times) but their vertical transport intensity slightly weakens (by ~10%) during the active phases. These results are useful for understanding the SASM and advancing the energetic framework.

Restricted access
Wenjun Cui, Xiquan Dong, Baike Xi, Zhe Feng, and Jiwen Fan

Abstract

Mesoscale convective systems (MCSs) play an important role in water and energy cycles as they produce heavy rainfall and modify the radiative profile in the tropics and midlatitudes. An accurate representation of MCSs’ rainfall is therefore crucial in understanding their impact on the climate system. The V06B Integrated Multisatellite Retrievals from Global Precipitation Measurement (IMERG) half-hourly precipitation final product is a useful tool to study the precipitation characteristics of MCSs because of its global coverage and fine spatiotemporal resolutions. However, errors and uncertainties in IMERG should be quantified before applying it to hydrology and climate applications. This study evaluates IMERG performance on capturing and detecting MCSs’ precipitation in the central and eastern United States during a 3-yr study period against the radar-based Stage IV product. The tracked MCSs are divided into four seasons and are analyzed separately for both datasets. IMERG shows a wet bias in total precipitation but a dry bias in hourly mean precipitation during all seasons due to the false classification of nonprecipitating pixels as precipitating. These false alarm events are possibly caused by evaporation under the cloud base or the misrepresentation of MCS cold anvil regions as precipitating clouds by the algorithm. IMERG agrees reasonably well with Stage IV in terms of the seasonal spatial distribution and diurnal cycle of MCSs precipitation. A relative humidity (RH)-based correction has been applied to the IMERG precipitation product, which helps reduce the number of false alarm pixels and improves the overall performance of IMERG with respect to Stage IV.

Free access
Samson Hagos, Zhe Feng, Sally McFarlane, and L. Ruby Leung

Abstract

By applying a cloud-tracking algorithm to tropical convective systems in a regional high-resolution model simulation, this study documents the environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various mechanisms of convection–environment interaction on the longevity of convective systems are quantified. The statistics of lifetime, maximum area, and propagation speed of the simulated deep convection agree well with geostationary satellite observations.

Among the environmental variables considered, lifetime of convective systems is found to be most related to midtropospheric moisture before as well as after the initiation of convection. Over ocean, convective systems enhance surface fluxes through the associated cooling and drying of the boundary layer as well as increased wind gusts. This process appears to play a minor positive role in the longevity of systems. For systems of equal lifetime, those over land tend to be more intense than those over ocean especially during the early stages of their life cycle. Both over ocean and land, convection is found to transport momentum vertically to increase low-level shear and decrease upper-level shear, but no discernible effect of shear on the lifetime of the convective systems is found.

Full access
Jingjing Tian, Xiquan Dong, Baike Xi, and Zhe Feng

Abstract

In this study, the mesoscale convective systems (MCSs) are tracked using high-resolution radar and satellite observations over the U.S. Great Plains during April–August from 2010 to 2012. The spatiotemporal variability of MCS precipitation is then characterized using the Stage IV product. We found that the spatial variability and nocturnal peaks of MCS precipitation are primarily driven by the MCS occurrence rather than the precipitation intensity. The tracked MCSs are further classified into convective core (CC), stratiform rain (SR), and anvil clouds regions. The spatial variability and diurnal cycle of precipitation in the SR regions of MCSs are not as significant as those of MCS precipitation. In the SR regions, the high-resolution, long-term ice cloud microphysical properties [ice water content (IWC) and ice water paths (IWPs)] are provided. The IWCs generally decrease with height. Spatially, the IWC, IWP, and precipitation are all higher over the southern Great Plains than over the northern Great Plains. Seasonally, those ice and precipitation properties are all higher in summer than in spring. Comparing the peak timings of MCS precipitation and IWPs from the diurnal cycles and their composite evolutions, it is found that when using the peak timing of IWPSR as a reference, the heaviest precipitation in the MCS convective core occurs earlier, while the strongest SR precipitation occurs later. The shift of peak timings could be explained by the stratiform precipitation formation process. The IWP and precipitation relationships are different at MCS genesis, mature, and decay stages. The relationships and the transition processes from ice particles to precipitation also depend on the low-level humidity.

Free access
Zhe Feng, Fengfei Song, Koichi Sakaguchi, and L. Ruby Leung

Abstract

A process-oriented approach is developed to evaluate warm-season mesoscale convective system (MCS) precipitation and their favorable large-scale meteorological patterns (FLSMPs) over the United States. This approach features a novel observation-driven MCS-tracking algorithm using infrared brightness temperature and precipitation features at 12-, 25-, and 50-km resolution and metrics to evaluate the model large-scale environment favorable for MCS initiation. The tracking algorithm successfully reproduces the observed MCS statistics from a reference 4-km radar MCS database. To demonstrate the utility of the new methodologies in evaluating MCS in climate simulations with mesoscale resolution, the process-oriented approach is applied to two climate simulations produced by the Variable-Resolution Model for Prediction Across Scales coupled to the Community Atmosphere Model physics, with refined horizontal grid spacing at 50 and 25 km over North America. With the tracking algorithm applied to simulations and observations at equivalent resolutions, the simulated number of MCS and associated precipitation amount, frequency, and intensity are found to be consistently underestimated in the central United States, particularly from May to August. The simulated MCS precipitation shows little diurnal variation and lasts too long, while the MCS precipitation area is too large and its intensity is too weak. The model is able to simulate four types of observed FLSMP associated with frontal systems and low-level jets (LLJ) in spring, but the frequencies are underestimated because of low-level dry bias and weaker LLJ. Precipitation simulated under different FLSMPs peak during the daytime, in contrast to the observed nocturnal peak. Implications of these findings for future model development and diagnostics are discussed.

Open access
Fiaz Ahmed, Courtney Schumacher, Zhe Feng, and Samson Hagos

Abstract

Radar-based latent heating retrievals typically apply a lookup table (LUT) derived from model output to surface rain amounts and rain type to determine the vertical structure of heating. In this study, a method has been developed that uses the size characteristics of precipitating systems (i.e., area and mean echo-top height) instead of rain amount to estimate latent heating profiles from radar observations. This technique [named the convective–stratiform area (CSA) algorithm] leverages the relationship between the organization of convective systems and the structure of latent heating profiles and avoids pitfalls associated with retrieving accurate rainfall information from radars and models. The CSA LUTs are based on a high-resolution regional model simulation over the equatorial Indian Ocean. The CSA LUTs show that convective latent heating increases in magnitude and height as area and echo-top heights grow, with a congestus signature of midlevel cooling for less vertically extensive convective systems. Stratiform latent heating varies weakly in vertical structure, but its magnitude is strongly linked to area and mean echo-top heights. The CSA LUT was applied to radar observations collected during the DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/ARM MJO Investigation Experiment (AMIE) field campaign, and the CSA heating retrieval was generally consistent with other measures of heating profiles. The impact of resolution and spatial mismatch between the model and radar grids is addressed, and unrealistic latent heating profiles in the stratiform LUT, namely, a low-level heating peak, an elevated melting layer, and net column cooling, were identified. These issues highlight the need for accurate convective–stratiform separations and improvement in PBL and microphysical parameterizations.

Full access