Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: Zhe-Min Tan x
  • Refine by Access: All Content x
Clear All Modify Search
Hao-Yan Liu
and
Zhe-Min Tan

Abstract

This paper reports on a dynamical initialization scheme for binary vortices (BVDI) that was developed to improve the initial conditions supplied to the models used to forecast binary tropical cyclones (TCs). For binary TCs, one TC can be regarded as the environment for the other TC’s development. Based on the dynamical initialization scheme for a single vortex (SVDI), a specified multistep iteration of SVDI was introduced in the BVDI scheme to ensure that each TC develops under conditions of realistic binary vortices interaction during the 6-h cycle run. In the BVDI scheme, each TC is initialized twice within a continuously adjusted environmental flow. Four clusters of forecast simulations with different initial conditions were run for 11 pairs of binary TCs over the northwest Pacific. The forecasts of binary TCs by the BVDI scheme reduced the position and intensity errors associated with the forecast TCs by 35.2% and 56.6%, respectively, compared with those without initialization, and also performed better than the direct extension of the SVDI scheme to binary TCs. The representation of binary vortices interaction will need to be improved for initialization and future forecasts of binary TCs.

Full access
Kekuan Chu
and
Zhe-Min Tan

Abstract

Annular hurricanes, characterized by annular structure, are a subset of mature-stage intense tropical cyclones, and they tend to be stronger and persist longer than average tropical cyclones. The characteristics of annular hurricanes in the North Atlantic and eastern-central North Pacific Oceans are well documented by Knaff et al. However, little is known about the annular typhoons in the western North Pacific (WNP). This study investigates the general features of annular typhoons in the WNP based on a 20-yr analysis (1990–2009) of global storm-centered infrared brightness temperature and passive microwave satellite datasets. Similar to annular hurricanes, annular typhoons also only form under a specific combination of environmental conditions, resulting in a quite low occurrence rate (~4%), and only 12 annular typhoons occur during this period. The concentric eyewall replacement is one effective pathway to annular typhoon formation. Three annular typhoons experienced the concentric eyewall replacement within 24 h prior to their annular phases during this period. There are two seedbeds, located east of Taiwan and in the central WNP, for annular typhoon formation within a narrow zonal belt (20°–30°N). The former is conducive to the landfall of annular typhoons, in particular six of the nine annular typhoons that formed in this region eventually made landfall. Because the average time interval between landfall of the annular typhoons and the end of their annular phase is relatively short, about 30 h, they can maintain near-peak intensities and hit the landfalling areas with record intensities. They present a unique threat to eastern Asia but have received little attention from the scientific community so far.

Full access
Xin Qiu
and
Zhe-Min Tan

Abstract

This study analyzes the secondary eyewall formation (SEF) process in an idealized cloud-resolving simulation of a tropical cyclone. In particular, the unbalanced boundary layer response to asymmetric inflow forcing induced by outer rainbands (ORBs) is examined in order to understand the mechanisms driving the sustained convection outside the primary eyewall during the early phase of SEF.

The enhancement of convection in the SEF region follows the formation and inward contraction of an ORB. The azimuthal distribution of the enhanced convection is highly asymmetric but regular, generally along a half circle starting from the downwind portion of the ORB. It turns out that the descending radial inflow in the middle and downwind portions of the ORB initiates/maintains a strong inflow in the boundary layer. The latter is able to penetrate into the inner-core region, sharpens the gradient of radial velocity, and reinforces convergence. Consequently, warm and moist air is continuously lifted up at the leading edge of the strong inflow to support deep convection. Moreover, the inflow from the ORB creates strong supergradient winds that are ejected outward downwind, thereby enhancing convergence and convection on the other side of the storm. The results provide new insight into the key processes responsible for convection enhancement during the early phase of SEF in three dimensions and suggest the limitations of axisymmetric studies. There are also implications regarding the impact of the asymmetric boundary layer flow under a translating storm on SEF.

Full access
Yi-Peng Guo
and
Zhe-Min Tan

Abstract

The variation in the interannual relationship between the boreal winter Hadley circulation (HC) and El Niño–Southern Oscillation (ENSO) during 1948–2014 is investigated. The interannual variability of the HC is dominated by two principal modes: the equatorial asymmetric mode (AM) and the equatorial symmetric mode (SM). The AM of the HC during ENSO events mainly results from a combined effect of the ENSO sea surface temperature (SST) anomalies and the climatological background SST over the South Pacific convergence zone. Comparatively, the SM shows a steady and statistically significant relationship with ENSO; however, the interannual relationship between the AM and ENSO is strengthened during the mid-1970s, which leads to a HC regime change—that is, the interannual pulse of the HC intensity and its response to ENSO are stronger after the mid-1970s than before. The long-term warming trend of the tropical western Pacific since the 1950s and the increased ENSO amplitude play vital roles in the HC regime change. Although the tropical eastern Pacific also experienced a long-term warming trend, it has little influence on the HC regime change due to the climatologically cold background SST over the cold tongue region.

Open access
Yi-Peng Guo
and
Zhe-Min Tan

Abstract

El Niño–Southern Oscillation (ENSO), which features an equatorial quasi-symmetric sea surface temperature anomaly (SSTA), is related to both the symmetric and asymmetric components of the Hadley circulation (HC) variability. However, the mechanisms for such a nonlinear HC–ENSO relationship are still unclear. Using 36-yr monthly reanalysis datasets, this study shows that the month-to-month HC variability is dominated by two principal modes, the asymmetric mode (AM) and symmetric mode (SM), both of which are highly correlated with ENSO variability. Furthermore, the relationship between the HC principal modes and the ENSO SSTA is modulated by the western Pacific SST annual cycle. When the zonal mean western Pacific SST peaks off (on) the equator, the ENSO SSTA leads to the AM (SM) of HC variability. This is because the zonal mean western Pacific SST peak provides a warmer background favorable for the SSTA to stimulate convection, indicating the important role of the combined effect of the SST annual cycle and the ENSO SSTA in affecting the HC variability. Importantly, the western Pacific SST annual cycle has no such modulation effect during central Pacific El Niño or La Niña events. The results have important implications for simulating and predicting the climatic impacts of ENSO and HC variability.

Open access
Jing-Yi Zhuo
and
Zhe-Min Tan

Abstract

Observed climate records of length, homogeneity, and reliability are the basis of climatological studies on tropical cyclones (TCs). However, such data are scarce for TC size in terms of wind field, particularly over the western North Pacific (WNP). This study demonstrates that deep learning can practically bridge this data gap when applied to satellite data. Using transfer learning, deep learning algorithms were developed to estimate reliable TC sizes from infrared imagery for the WNP TCs. The algorithms were then applied to a homogeneous satellite database to reconstruct a new historical dataset of TC sizes, named DeepTCSize, which covers 37 years (1981–2017) over the WNP. DeepTCSize includes multiple TC size quantities, such as wind radii of 17, 26, and 33 m s−1 and maximum winds (i.e., R17, R26, R33, and RMW), which have high correlations (R = 0.85, 0.84, 0.79, and 0.76, respectively) with postseason quality-controlled best track data. Comparisons with ocean wind observations were made and this further revealed that DeepTCSize has good quality and is free from spurious error trends, providing an advantage over the historical “best estimates” of TC sizes currently available in the best track archives for the WNP. The new reconstructed TC sizes dataset for the WNP TCs shows significant expanding trends in the annual-mean outer circulations (at a rate of 2% decade−1 for R17 and a rate of 2% decade−1 for R26), which are mainly associated with weaker storms, as well as a weak contracting trend in the annual-mean inner-core size (RMW).

Significance Statement

Tropical cyclone (TC) size largely controls the TC-induced hazard and risk. If the size of TC can be determined more efficiently in observations spanning a long-enough period, the climatology and changes in TC can be better modeled and understood. This study applies deep learning methods to reconstruct a new dataset of multiple inner- to outer-core TC size metrics from infrared imagery of satellites for the western North Pacific TCs. The dataset spans 37 years. It is homogenous and has comparable accuracy with the existing “best estimates.” Using the dataset, a significant expanding trend was identified in the outer-core size, while the inner-core size exhibits a weak contracting trend. The dataset can be employed in several applications.

Restricted access
Yi-Peng Guo
and
Zhe-Min Tan

Abstract

This study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification. A positive wind–sea surface temperature (SST)–precipitation feedback was found to facilitate the ability of the signal of the EOF-1 to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warm the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, strengthens the monsoon trough, and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.

Open access
Dian-Yi Li
and
Zhe-Min Tan

Abstract

The negative feedback between tropical cyclone (TC) intensity and sea surface temperature (SST) plays an important role in TC development. In this study, ocean–atmosphere coupled and uncoupled ensemble forecasts are conducted to investigate the dynamics of error growth and predictability of TC intensity in an ocean–atmosphere coupled system. For the TC–ocean coupled system, the TC intensity–SST negative feedback is the essential mechanism to reduce the error growth of TC intensity by two routes, and thereby improves the TC intensity predictability. For the first route (atmosphere-limited route), the TC-induced SST cooling slows the intensification rate of the TC and weakens the final TC intensity, thereby reducing the error growth of TC intensity. In this route, the TC intensity spread is limited by the magnitude of TC intensity, while SST can be regarded as an environmental forcing. For the second route (atmosphere–ocean mutually influenced route), the interaction between the TC intensity spread and SST spread is dominant. The increasing TC intensity spread could lead to an increase in SST cooling spread, and then reduce the TC intensity spread through the negative feedback. In other words, the more (less) intense TC produces stronger (weaker) SST cooling, and thereby limits (enhances) further TC intensification in an ensemble forecast. In the second route, initial ocean temperature uncertainty could suppress the TC intensity spread reduction.

Significance Statement

Tropical cyclones force the sea surface and can lead to its cooling. This cooled sea surface can then suppress tropical cyclone intensification. The purpose of this study is to better examine the influence of such an interaction between a tropical cyclone and the ocean on tropical cyclone forecasts. We explore how accurately representing the interaction can improve the capacity to forecast tropical cyclone intensity. Given that many weather forecasting centers have considered this interaction in their models, this study should help them to understand and improve their forecasts.

Restricted access
Bolei Yang
and
Zhe-Min Tan

Abstract

Interactive radiation helps accelerate tropical cyclogenesis, but the mechanism is still unclear. Using idealized numerical modeling in the radiative–convective equilibrium framework, it is revealed that interactive radiation can bring forward tropical cyclogenesis by accelerating the development of the midlevel vortex. A strong horizontal longwave radiative warming anomaly in the layer between 6 and 11 km altitudes in the vortex region, caused by large concentration of ice-phased particles at high levels, is critical to the development of the midlevel vortex. This longwave radiative warming anomaly induces more upward water vapor flux (mainly in the nonconvective region) and then results in more latent heating at upper levels and more sublimation and melting cooling at lower levels. This leads to an increase of the vertical diabatic heating gradient, and then the intensification of the midlevel vortex. A stronger upward water vapor flux also produces more condensates at upper levels and further enhances the horizontal longwave radiative warming anomaly in the upper troposphere, constituting a positive feedback, and then accelerates tropical cyclogenesis.

Free access
Bolei Yang
and
Zhe-Min Tan

Abstract

Self-aggregation of convection can be considered as the simultaneous occurrence of dry patch initiation/amplification and wet patch contraction/intensification from initially uniform moisture and temperature fields. As the twin of wet patches, dry patches play an important role in moisture and energy balance during convective self-aggregation. In this study, the WRF Model is used to study the initiation of dry patches in convective self-aggregation, especially the continuous drying in their boundary layer (BL). In the dry patch BL, increased air density leads to an enhanced high pressure anomaly, which drives an amplifying BL divergent flow and induces an amplifying BL subsidence. The virtual effect of drying by subsidence counteracts warming by subsidence and the BL process, further increasing BL air density. Our analysis indicates the existence of a dry-subsidence feedback, which leads to the initiation of dry patches in convective self-aggregation. This feedback is shown to be important even in very large-scale (3000 km × 9000 km) cloud-resolving convective self-aggregation simulations.

Free access