Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Zhongxiang Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Zhongxiang Zhao

Abstract

The yearly mode-1 M2 internal tide model in 2019 is constructed using sea surface height measurements made by six concurrent satellite altimetry missions: Jason-3, Sentinel-3A, Sentinel-3B, CryoSat-2, Haiyang-2A, and SARAL/AltiKa. The model is developed following a three-step procedure consisting of two rounds of plane wave analysis with a spatial bandpass filter in between. Prior mesoscale correction is made on the altimeter data using AVISO gridded mesoscale fields. The model is labeled Y2019, because it represents the 1-yr-coherent internal tide field in 2019. In contrast, the model developed using altimeter data from 1992 to 2017 is labeled MY25, because it represents the multiyear-coherent internal tide field in 25 years. Thanks to the new mapping technique, model errors in Y2019 are as low as those in MY25. Evaluation using independent altimeter data confirms that Y2019 reduces slightly less variance (āˆ¼6%) than MY25. Further analysis reveals that the altimeter data from five missions (without Jason-3) can yield an internal tide model of almost the same quality. Comparing Y2019 and MY25 shows that mode-1 M2 internal tides are subject to significant interannual variability in both amplitude and phase, and their interannual variations are a function of location. Along southward internal tides from Amukta Pass, the energy flux in Y2019 is 2 times larger and the phase speed is about 1.1% faster. This mapping technique has been applied successfully to 2017 and 2018. This work demonstrates that yearly internal tides can be observed by concurrent altimetry missions and their interannual variations can be determined.

Significance Statement

This work is motivated to study the interannual variations of internal tides using observation-based yearly internal tide models from satellite altimetry. Previous satellite observations of internal tides are usually based on 25 years of altimeter data from 1993 to 2017. The yearly subsetted altimeter data are short, so that the resultant yearly models are overwhelmed by noise. A new mapping technique is developed and demonstrated in this paper. It paves a path to study the interannual and decadal variations of internal tides on a global scale and monitor the global ocean changes by tracking long-range internal tides.

Full access
Zhongxiang Zhao

Abstract

Previous satellite estimates of internal tides are usually based on 25 years of sea surface height (SSH) data from 1993 to 2017 measured by exact-repeat (ER) altimetry missions. In this study, new satellite estimates of internal tides are based on 8 years of SSH data from 2011 to 2018 measured mainly by nonrepeat (NR) altimetry missions. The two datasets are labeled ER25yr and NR8yr, respectively. NR8yr has advantages over ER25yr in observing internal tides because of its shorter time coverage and denser ground tracks. Mode-1 M2 internal tides are mapped from both datasets following the same procedure that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. The denser ground tracks of NR8yr make it possible to examine the impact of window size in the first-round plane wave analysis. Internal tides mapped using six different windows ranging from 40 to 160 km have almost the same results on global average, but smaller windows can better resolve isolated generation sources. The impact of time coverage is studied by comparing NR8yr160km and ER25yr160km, which are mapped using 160-km windows in the first-round plane wave analysis. They are evaluated using independent satellite altimetry data in 2020. NR8yr160km has larger model variance and can cause larger variance reduction, suggesting that NR8yr160km is a better model than ER25yr160km. Their global energies are 43.6 and 33.6 PJ, respectively, with a difference of 10 PJ. Their energy difference is a function of location.

Significance Statement

Our understanding of internal tides is mainly limited by the scarcity of field measurements with sufficient spatiotemporal resolution. Satellite altimetry offers a unique technique for observing and predicting internal tides on a global scale. Previous satellite observations of internal tides are mainly based on 25 years of data from exact-repeat altimetry missions. This paper demonstrates that internal tides can be mapped using 8 years of data made by nonrepeat altimetry missions. The new dataset has shorter time coverage and denser ground tracks; therefore, one can examine the impact of window size and time coverage on mapping internal tides from satellite altimetry. A comparison of models mapped from the two datasets sheds new light on the spatiotemporal variability of internal tides.

Free access
Zhongxiang Zhao

Abstract

The seasonal variability of mode-1 M2 internal tides is investigated using 25 years of multisatellite altimeter data from 1992 to 2017. Four seasonal internal tide models are constructed using seasonally subsetted altimeter data and World Ocean Atlas seasonal climatologies. This work is made possible by a newly developed mapping procedure that can significantly suppress model errors. Seasonal-mean and seasonally variable internal tide models are derived from the four seasonal models. All of the models are intercompared and evaluated using independent CryoSat-2 data. The seasonal-mean model is overall the best model because averaging the four seasonal models further reduces model errors. The seasonally variable models are better in the tropical zone, where large seasonal signals may overcome model errors. Each seasonal model works best in its own season and worst in its opposite season. These internal tide models reveal that mode-1 M2 internal tides are subject to significant seasonal variability and that their seasonal variations are a function of location. Large seasonal variations dominantly occur in the tropical zone, where the World Ocean Atlas climatology shows strong seasonal variations in ocean stratification. Seasonal phase variations are obtained from the directionally decomposed internal tide components. They are dominantly Ā±60Ā° at the equator and up to Ā±120Ā° in the central Arabian Sea. Incoherence caused by seasonal phase variations is usually less than 10% but may be up to 40%ā€“50% in the tropical zone.

Full access
Kun Liu
and
Zhongxiang Zhao

Abstract

The disintegration of the equatorward-propagating K1 internal tide in the South China Sea (SCS) by parametric subharmonic instability (PSI) at its critical latitude of 14.52Ā°N is investigated numerically. The multiple-source generation and long-range propagation of K1 internal tides are successfully reproduced. Using equilibrium analysis, the internal wave field near the critical latitude is found to experience two quasi-steady states, between which the subharmonic waves develop constantly. The simulated subharmonic waves agree well with classic PSI theoretical prediction. The PSI-induced near-inertial waves are of half the K1 frequency and dominantly high modes, the vertical scales ranging from 50 to 180 m in the upper ocean. From an energy perspective, PSI mainly occurs in the critical latitudinal zone from 13Ā° to 15Ā°N. In this zone, the incident internal tide loses ~14% energy in the mature state of PSI. PSI triggers a mixing elevation of O(10āˆ’5ā€“10āˆ’4) m2 sāˆ’1 in the upper ocean at the critical latitude, which is several times larger than the background value. The contribution of PSI to the internal tide energy loss and associated enhanced mixing may differ regionally and is closely dependent on the intensity and duration of background internal tide. The results elucidate the far-field dissipation mechanism by PSI in connecting interior mixing with remotely generated K1 internal tides in the Luzon Strait.

Full access
Zhongxiang Zhao
and
Eric A. Dā€™Asaro

Abstract

Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40ā€“50 kHz with wind speeds up to 45 m sāˆ’1 beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, and therefore rain cannot be detected by sound level alone. A rain detection algorithm that is based on the variations of 5ā€“30-kHz sound levels with periods longer than 20 s and shorter than 30 min is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) are due to overall wind variations. Higher-frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds < 40 m sāˆ’1, the variation in sound level is much larger than that expected from observed wind variations and is roughly comparable to that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound because of limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies.

Significance Statement

Rain is an indispensable process in forecasting the intensity and path of tropical cyclones. However, its role in the airā€“sea interaction is still poorly understood, and its parameterization in numerical models is still in development. In this work, we analyzed sound measurements made by hydrophones on board Lagrangian floats beneath tropical cyclones. We find that wind, rain, and breaking waves each have distinctive signatures in underwater ambient sound. We suggest that the airā€“sea dynamic processes in tropical cyclones can be explored by listening to ambient sound using hydrophones beneath the sea surface.

Free access
Matthew H. Alford
and
Zhongxiang Zhao

Abstract

Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M 2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong springā€“neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately Ā±45Ā° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW māˆ’1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a Ī² plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉ g ā‰” F E āˆ’1, is examined for both frequency bands.

Full access
Matthew H. Alford
and
Zhongxiang Zhao

Abstract

Using a set of 80 globally distributed time series of near-inertial and semidiurnal energy E and energy flux F computed from historical moorings, the group velocity ĉ g ā‰” F E āˆ’1 is estimated. For a single free wave, observed group speed |ĉ g | should equal that expected from linear wave theory. For comparison, the latitude dependence of perceived group speed for perfectly standing waves is also derived. The latitudinal dependence of observed semidiurnal |ĉ g | closely follows that expected for free waves at all latitudes, implying that 1) low-mode internal tides obey linear theory and 2) standing internal-tidal waves are rare in the deep ocean for latitudes equatorward of about 35Ā°. At higher latitudes, standing waves cannot be easily distinguished from free waves using this method because their expected group speeds are similar. Near-inertial waves exhibit scattered |ĉ g | values consistent with the passage of events generated at various latitudes, with implied frequencies Ļ‰ ā‰ˆ 1.05ā€“1.25 Ɨ f, as typically observed in frequency spectra.

Full access
Zhongxiang Zhao
and
Matthew H. Alford

Abstract

New estimates of mode-1 M 2 internal tide energy flux are computed from an extended Ocean Topography Experiment (TOPEX)/Poseidon (T/P) altimeter dataset that includes both the original and tandem tracks, improving spatial resolution over previous estimates from O(500 km) to O(250 km). Additionally, a new technique is developed that allows separate resolution of northward and southward components. Half-wavelength features previously seen in unseparated estimates are shown to be due to the superposition of northward and southward wave trains. The new technique and higher spatial resolution afford a new view of mode-1 M 2 internal tides in the central North Pacific Ocean. As with all altimetric estimates, only the coherent or phase-locked signals are detectable owing to the long repeat period of the tracks. Emanating from specific generation sites consistent with predictions from numerical models, internal tidal beams 1) are as narrow as 200 km and 2) propagate a longer distance than previously observed. Two northward internal tidal beams radiating from the Hawaiian Ridge, previously obscured by coarse resolution and the southward Aleutian beam, are now seen to propagate more than 3500 km across the North Pacific Ocean to reach the Alaskan shelf. The internal tidal beams are much better resolved than in previous studies, resulting in better agreement with moored flux estimates.

Full access
Zhongxiang Zhao
,
Matthew H. Alford
,
Jennifer A. MacKinnon
, and
Rob Pinkel

Abstract

The northeastward progression of the semidiurnal internal tide from French Frigate Shoals (FFS), Hawaii, is studied with an array of six simultaneous profiling moorings spanning 25.5Ā°ā€“37.1Ā°N (ā‰ˆ1400 km) and 13-yr-long Ocean Topography Experiment (TOPEX)/Poseidon (T/P) altimeter data processed by a new technique. The moorings have excellent temporal and vertical resolutions, while the altimeter offers broad spatial coverage of the surface manifestation of the internal tideā€™s coherent portion. Together these two approaches provide a unique view of the internal tideā€™s long-range propagation in a complex ocean environment. The moored observations reveal a rich, time-variable, and multimodal internal tide field, with higher-mode motions contributing significantly to velocity, displacement, and energy. In spite of these contributions, the coherent mode-1 internal tide dominates the northeastward energy flux, and is detectable in both moored and altimetric data over the entire array. Phase and group propagation measured independently from moorings and altimetry agree well with theoretical values. Sea surface height anomalies (SSHAs) measured from moorings and altimetry agree well in amplitude and phase until the northern end of the array, where phase differences arise presumably from refraction by mesoscale flows. Observed variations in SSHA, energy flux, and kinetic-to-potential energy ratio indicate an interference pattern resulting from superposed northeastward radiation from Hawaii and southeastward from the Aleutian Ridge. A simple model of two plane waves explains most of these features.

Full access
Zhongxiang Zhao
,
Eric A. Dā€™Asaro
, and
Jeffrey A. Nystuen

Abstract

Underwater ambient sound levels beneath tropical cyclones were measured using hydrophones onboard Lagrangian floats, which were air deployed in the paths of Hurricane Gustav (2008) and Typhoons Megi (2010) and Fanapi (2010). The sound levels at 40 Hzā€“50 kHz from 1- to 50-m depth were measured at wind speeds up to 45 m sāˆ’1. The measurements reveal a complex dependence of the sound level on wind speed due to the competing effects of sound generation by breaking wind waves and sound attenuation by quiescent bubbles. Sound level increases monotonically with increasing wind speed only for low frequencies (<200 Hz). At higher frequencies (>200 Hz), sound level first increases and then decreases with increasing wind speed. There is a wind speed that produces a maximum sound level for each frequency; the wind speed of the maximum sound level decreases with frequency. Sound level at >20 kHz mostly decreases with wind speed over the wind range 15ā€“45 m sāˆ’1. The sound field is nearly uniform with depth in the upper 50 m with nearly all sound attenuation limited to the upper 2 m at all measured frequencies. A simple model of bubble trajectories based on the measured float trajectories finds that resonant bubbles at the high-frequency end of the observations (25 kHz) could easily be advected deeper than 2 m during tropical cyclones. Thus, bubble rise velocity alone cannot explain the lack of sound attenuation at these depths.

Full access