Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ziqing Zu x
  • All content x
Clear All Modify Search
Ziqing Zu, Mu Mu, and Henk A. Dijkstra

Abstract

Within a three-dimensional ocean circulation model, the nonlinear optimal initial perturbations (NOIP) of sea surface salinity (SSS) and sea surface temperature (SST) to excite variability in the Atlantic meridional overturning circulation (AMOC) were obtained under prescribed heat and freshwater flux boundary conditions, using the conditional nonlinear optimal perturbation (CNOP) method. After 10 years, the optimal SSS and SST perturbations lead to reductions of the AMOC by 3.6 and 2.5 Sv (1 Sv = 106 m3 s−1), respectively, followed by multidecadal oscillations with a period of about 50 years. During the first 30 years, nonlinear processes have an important influence on the AMOC strength: convection strengthens the AMOC during years 0–2, zonal density advection promotes the slowdown of the AMOC during years 7–20, and meridional density advection inhibits the slowdown of meridional velocities in the upper ocean during years 5–18. The linear optimal initial perturbation (LOIP) was also computed using the first singular vector (FSV) method. For SSS perturbations with an amplitude of 0.5 psu, the LOIP will cause an underestimation of the amplitude of the multidecadal AMOC variability by about 1 Sv, compared to that induced by the NOIP. This underestimation will become more significant as the amplitudes of SSS perturbations increase.

Full access
Shihe Ren, Xueming Zhu, Marie Drevillon, Hui Wang, Yunfei Zhang, Ziqing Zu, and Ang Li

Abstract

A frontal detection algorithm is developed with the capability of detecting significant frontal segments of sea surface temperature (SST) in the high-resolution South China Sea Operational Forecasting System (SCSOFS). To effectively obtain frontal information, a gradient-based Canny edge detection algorithm is improved with postprocessing designed for high-resolution numerical models, aiming at extracting primary ocean fronts while ensuring the balance of frontal continuity and positioning accuracy. Metrics of frontal probability and strength are used to measure the robustness of the results in terms of mean state and seasonal variability of frontal activities in the South China Sea (SCS). Most fronts are found in the nearshore and form a strip shape extending from the Taiwan Strait to the coast of Vietnam. The SCSOFS is found to reproduce strong seasonal signals dominating the variability of the frontal strength and occurrence probability in the SCS. We implement the algorithm on the daily averaged SST derived from two other SST analyses for intercomparison in the SCS.

Restricted access