Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Zoran Pasarić x
  • All content x
Clear All Modify Search
Mirko Orlić and Zoran Pasarić

Abstract

An existing reduced-gravity model that reproduces the response of the coastal sea to alongshore wind forcing at subinertial frequencies is extended by allowing for cross-shore wind forcing and by considering superinertial frequencies. The obtained explicit solution shows that the wind-driven currents are predominantly controlled by friction and the Coriolis force at subinertial frequencies and by friction and local acceleration at superinertial frequencies. The effect of the coast is manifested by coastal-trapped variability at subinertial frequencies and baroclinic inertia–gravity waves propagating away from the coast at superinertial frequencies. The pycnocline oscillates at the coast not only at subinertial but also at superinertial frequencies, with the alongshore wind contributing more to the former and the cross-shore wind influencing more the latter. The oscillations are most pronounced when the periodic wind forcing is resonantly coupled to the local inertial oscillations (but only if the wind is not rotating counter to the inertial currents) and at near-zero frequencies (but not when the wind is purely cross-shore). These theoretical findings are related to recent observations of diurnal temperature oscillations in the near-shore water column.

Full access
Mirko Orlić and Zoran Pasarić

Abstract

Three variants of the semiempirical method for sea level projection are considered. They differ in assuming that the response of sea level to temperature forcing is equilibrium, inertial, or a combination of the two. All variants produce a successful regression of the temperature and sea level data, albeit with controlling parameters that differ among the cases. The related response times vary considerably, with a realistic value (~50 yr) obtained only if both the equilibrium and the inertial dynamics are taken into account. A comparison of sea levels projected by using the three variants shows that the time series are similar through the middle of the twenty-first century but they radically diverge by the end of the twenty-third century. This result is interpreted with the aid of the underlying transfer functions. It suggests that one should be cautious when using the semiempirical method to project sea level beyond the twenty-first century.

Full access