Search Results

You are looking at 1 - 2 of 2 items for :

  • Mesoscale forecasting x
  • The 1st NOAA Workshop on Leveraging AI in the Exploitation of Satellite Earth Observations & Numerical Weather Prediction x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All
John L. Cintineo, Michael J. Pavolonis, Justin M. Sieglaff, Anthony Wimmers, Jason Brunner, and Willard Bellon

:// . Purdom , J. , 1976 : Some uses of high-resolution GOES imagery in mesoscale forecasting of convection and its behavior . Mon. Wea. Rev. , 104 , 1474 – 1483 ,<1474:SUOHRG>2.0.CO;2 . 10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2 Ronneberger , O. , P. Fischer , and T. Brox , 2015 : U-Net: Convolutional networks for biomedical image segmentation. MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention , N. Navab et al., Eds

Restricted access
Eric D. Loken, Adam J. Clark, Amy McGovern, Montgomery Flora, and Kent Knopfmeier

SREF analyses herein are output to a grid with 32-km horizontal grid spacing (NCEP grid 221). SREF configuration details are summarized in Table 2 . Table 2. SREF member specifications, adapted from Du et al. (2015) . Initial conditions (ICs) are taken from the operational Rapid Refresh (RAP; Benjamin et al. 2016 ), the National Centers for Environmental Prediction’s (NCEP’s) Global Forecast System (GFS), and the North American Mesoscale Model Data Assimilation System (NDAS). IC perturbations

Full access