Search Results

You are looking at 1 - 10 of 11 items for :

  • North America x
  • Monthly Weather Review x
  • RELAMPAGO-CACTI: High Impact Weather in Subtropical South America x
  • Refine by Access: All Content x
Clear All
Jeremiah O. Piersante, Kristen L. Rasmussen, Russ S. Schumacher, Angela K. Rowe, and Lynn A. McMurdie

subtropical South America (SSA) are deeper and more frequent than those east of the Rocky Mountains in North America ( Zipser et al. 2006 ; Houze et al. 2015 ). Specifically, the cloud shields associated with SSA mesoscale convective systems (MCSs) are approximately 60% larger than those occurring in the continental United States (CONUS; Velasco and Fritsch 1987 ) and their precipitation areas are larger and longer lived ( Durkee et al. 2009 ; Durkee and Mote 2010 ), contributing up to ~95% of warm

Restricted access
Russ S. Schumacher, Deanna A. Hence, Stephen W. Nesbitt, Robert J. Trapp, Karen A. Kosiba, Joshua Wurman, Paola Salio, Martin Rugna, Adam C. Varble, and Nathan R. Kelly

subtropical South America is the South American low-level jet (e.g., Vera et al. 2006 ; Salio et al. 2007 ; Montini et al. 2019 ). During RELAMPAGO, a sounding site at Villa de María del Río Seco (hereinafter Villa de María), located approximately 175 km north of Córdoba ( Fig. 1a ), collected daily soundings at 0900 UTC, along with other times during IOPs, to monitor the SALLJ and its potential effects on convection. The objective criteria for identifying low-level jets first introduced by Bonner

Restricted access
Zhixiao Zhang, Adam Varble, Zhe Feng, Joseph Hardin, and Edward Zipser

repository hosted by the NCAR Earth Observing Laboratory ( ). Relevant radiosondes are available through the Atmospheric Radiation Measurement (ARM) archive ( ). Raw model output is available by contacting the authors. REFERENCES Benjamin , S. G. , and Coauthors , 2016 : A North American hourly assimilation and model forecast cycle: The Rapid Refresh . Mon. Wea. Rev. , 144 , 1669 – 1694 ,

Restricted access
T. Connor Nelson, James Marquis, Adam Varble, and Katja Friedrich

) flow of all cases, while CI cases had the strongest. Due to the similarity in the terrain-perpendicular wind, there are no statistical differences in F n 8 for the CI, Fail, or Null events. Therefore, the differences in upslope flow do not appear to differentiate event types. Fig . 9. Mean terrain (SDC) relative low-level winds (lowest 100 hPa) for CI (green), Fail (blue), and Null (red) events, where the north–south line is terrain parallel and west–east is terrain perpendicular. Proximity

Restricted access
Zachary S. Bruick, Kristen L. Rasmussen, Angela K. Rowe, and Lynn A. McMurdie

show why this region is highly favored for convective initiation and subsequent upscale growth. Convergence is maximized near the SDC due to the impingement of the South American low-level jet (SALLJ) from the north and ageostrophic midlevel flow from the south on the elevated terrain. Because of the descent of upper-level air in the lee of the Andes, a mechanical capping inversion exists over the region that inhibits convective initiation. Moisture is advected into subtropical South America from

Full access
Zachary S. Bruick, Kristen L. Rasmussen, and Daniel J. Cecil

1. Introduction Hail in subtropical South America can be very large ( Rasmussen et al. 2014 ) and frequent (10–30 storms per year in central Argentina; Cecil and Blankenship 2012 ), and it causes significant impacts to property and the agricultural economy in this region. Hail has been studied for more than five decades, yet relatively little is known about the storms that produce hail or the environments that support hail-producing storms in subtropical South America. Hail research in the

Free access
Jake P. Mulholland, Stephen W. Nesbitt, Robert J. Trapp, Kristen L. Rasmussen, and Paola V. Salio

.1175/JAMC-D-14-0114.1 . 10.1175/JAMC-D-14-0114.1 Ribeiro , B. Z. , and L. F. Bosart , 2018 : Elevated mixed layers and associated severe thunderstorm environments in South and North America . Mon. Wea. Rev. , 146 , 3 – 28 , . 10.1175/MWR-D-17-0121.1 Romatschke , U. , and R. A. Houze Jr. , 2010 : Extreme summer convection in South America . J. Climate , 23 , 3761 – 3791 , . 10.1175/2010JCLI3465.1 Salio

Full access
Robert J. Trapp, Karen A. Kosiba, James N. Marquis, Matthew R. Kumjian, Stephen W. Nesbitt, Joshua Wurman, Paola Salio, Maxwell A. Grover, Paul Robinson, and Deanna A. Hence

1. Introduction Satellite observations suggest that thunderstorms in southeast South America are among the most intense and deepest in the world ( Zipser et al. 2006 ), are prolific hail producers ( Cecil and Blankenship 2012 ; Mezher et al. 2012 ; Bang and Cecil 2019 ; Bruick et al. 2019 ), and often are accompanied by extreme lightning activity and flooding (e.g., Rasmussen et al. 2014 ). In Argentina specifically, thunderstorm-generated hazards adversely impact a largely urban population

Free access
Hernán Bechis, Paola Salio, and Juan José Ruiz

dryline is required. Some studies ( Owen 1966 ; Hoch and Markowski 2005 ; Schultz et al. 2007 ) use surface observations to manually detect drylines. Based on this approach they found that drylines are observed over the U.S. Great Plains on 32%–45% of the spring season days (April, May, and June). Duell and Van Den Broeke (2016) developed an objective algorithm to detect drylines in the Mississippi River valley (United States), where drylines are less frequent, using data from the North American

Free access
Jake P. Mulholland, Stephen W. Nesbitt, and Robert J. Trapp

initially favor supercells as the primary convective mode, may later favor a more rapid upscale transition into MCSs via cold pool amalgamation and/or surging outflows (e.g., Coniglio et al. 2010 ; Peters et al. 2017 ; and references therein). One region of the world that is susceptible to rapid upscale growth of deep moist convection is the northern half of Argentina, South America. The present study is focused along an approximately north–south mountain chain called the Sierras de Córdoba (SDC) (e

Free access