Search Results

You are looking at 1 - 10 of 91 items for :

  • Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery x
  • Refine by Access: All Content x
Clear All
John R. Mecikalski and Kristopher M. Bedka

15-min time resolution 1-km VIS and interpolated IR imagery from GOES. Results indicate that CI may be forecasted up to ∼45 min in advance through the monitoring of key IR temperatures/trends for convective clouds. For the IHOP case (case I), over the elevated terrain in New Mexico, results suggest that up to 60-min lead times are possible. Based on these results, we surmise that the current predictability limitation of this algorithm is ∼1 h, as cumulus clouds evolving for longer periods often

Full access
Dan Bikos, Daniel T. Lindsey, Jason Otkin, Justin Sieglaff, Louie Grasso, Chris Siewert, James Correia Jr., Michael Coniglio, Robert Rabin, John S. Kain, and Scott Dembek

the cloud evolution is by viewing the higher temporal resolution animated imagery; links to the animations are provided in the Fig. 2 caption. The corresponding GOES-13 imagery in Figs. 2d–f depicts low-level clouds dissipating across portions of Wyoming, with thunderstorm development in southeast Wyoming by 1902 UTC. However, the GOES-13 imagery also shows low-level clouds persisting in the western Nebraska panhandle and northeast Colorado where the NSSL-WRF had forecast low cloud

Full access
Steven J. Goodman, James Gurka, Mark DeMaria, Timothy J. Schmit, Anthony Mostek, Gary Jedlovec, Chris Siewert, Wayne Feltz, Jordan Gerth, Renate Brummer, Steven Miller, Bonnie Reed, and Richard R. Reynolds

. Wea. Forecasting , 25 , 220 – 241 . McCaul , E. W. , S. J. Goodman , K. M. LaCasse , and D. J. Cecil , 2009 : Forecasting lightning threat using cloud-resolving model simulations . Wea. Forecasting , 24 , 709 – 729 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery . Mon. Wea. Rev. , 134 , 49 – 78 . Mecikalski , J. R. , W. M. Mackenzie Jr ., M. Koenig , and S

Full access
Chad M. Gravelle, John R. Mecikalski, William E. Line, Kristopher M. Bedka, Ralph A. Petersen, Justin M. Sieglaff, Geoffrey T. Stano, and Steven J. Goodman

– 729 , doi: 10.1175/2008WAF2222152.1 . McGinley , J. A ., 1989 : The Local Analysis and Prediction System . Preprints, 12th Conf. on Weather Analysis and Forecasting , Monterey, CA , Amer. Meteor. Soc. , 15 – 20 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving cumulus daytime GOES imagery . Mon. Wea. Rev. , 134 , 49 – 78 , doi: 10.1175/MWR3062.1 . Mecikalski , J. R. , S. J. Paech , K. M. Bedka , and L. A

Full access
Kristopher M. Bedka and John R. Mecikalski

initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev. in press . Menzel , W. P. and J. F. W. Purdom . 1994 . Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc. 75 : 757 – 781 . Menzel , W. P. , W. L. Smith , and T. R. Stewart . 1983 . Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor. 22 : 377 – 384 . Merrill , R

Full access
Justin M. Sieglaff, Lee M. Cronce, Wayne F. Feltz, Kristopher M. Bedka, Michael J. Pavolonis, and Andrew K. Heidinger

high-level wind divergence. Mon. Wea. Rev. , 132 , 714 – 725 . Maddox , R. A. , 1980 : Mesoscale convective complexes. Bull. Amer. Meteor. Soc. , 61 , 1374 – 1387 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev. , 134 , 49 – 78 . Mecikalski , J. R. , and Coauthors , 2007 : Aviation applications for satellite-based observations of cloud properties

Full access
John S. Kain, Michael C. Coniglio, James Correia, Adam J. Clark, Patrick T. Marsh, Conrad L. Ziegler, Valliappa Lakshmanan, Stuart D. Miller Jr., Scott R. Dembek, Steven J. Weiss, Fanyou Kong, Ming Xue, Ryan A. Sobash, Andrew R. Dean, Israel L. Jirak, and Christopher J. Melick

calibrating deterministic forecasts of rare events . Wea. Forecasting , 27 , 531 – 538 . McCaul , E. W. , S. J. Goodman , K. M. LaCasse , and D. J. Cecil , 2009 : Forecasting lightning threat using cloud-resolving model simulations . Wea. Forecasting , 24 , 709 – 729 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery . Mon. Wea. Rev. , 134 , 49 – 78 . Roberts , R. D. , and S

Full access
John R. Mecikalski, Wayne M. MacKenzie Jr., Marianne Koenig, and Sam Muller

. Grasso , J. A. Knaff , and J. F. Dostalek , 2006 : GOES climatology and analysis of thunderstorms with enhanced 3.9- μ m reflectivity. Mon. Wea. Rev. , 134 , 2342 – 2353 . McCann , D. W. , 1983 : The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev. , 111 , 887 – 894 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev. , 134 , 49 – 78

Full access
John R. Mecikalski, Kristopher M. Bedka, Simon J. Paech, and Leslie A. Litten

. Jolliffe , I. T. , 2002 : Principal Component Analysis . 2nd ed. Springer, 487 pp . Lazzara , M. A. , and Coauthors , 1999 : The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc. , 80 , 271 – 284 . Mecikalski , J. R. , and K. M. Bedka , 2006 : Forecasting convective initiation by monitoring the evolution of moving convection in daytime GOES imagery. Mon. Wea. Rev. , 134 , 49 – 78 . Mecikalski , J. R. , and Coauthors

Full access
John F. Dostalek, John F. Weaver, James F. W. Purdom, and Karen Y. Winston

. 4. Final remarks Imagery from the new GOES satellites provides an effective tool for the detection and monitoring of LTO boundaries during both day and night. These boundaries are not only important to later convective development, but also in the nowcasting of wind shifts, low-level wind shear, and changes in temperature and dewpoint temperature. Visible imagery can be used during daylight hours, while the multispectral image product extends that capability to nighttime situations. There is

Full access