Search Results

You are looking at 1 - 10 of 900 items for :

  • Tornadogenesis x
  • All content x
Clear All
Jason Naylor and Matthew S. Gilmore

the environment (also known as barotropic vorticity), or transport of vertical vorticity to the surface. More than one of these processes contributes to the rotation within the low-level mesocyclone ( Klemp and Rotunno 1983 ; Davies-Jones and Brooks 1993 ; A99 ; Markowski et al. 2008 ); however, the relative importance of these processes to tornadogenesis appears to vary among cases. First, modeling studies by Davies-Jones and Brooks (1993) and Grasso and Cotton (1995) found that the

Full access
David G. Lerach and William R. Cotton

diameter of rain and hail distributions (all else being equal) reduced the net surface area of the hydrometeors, thereby reducing evaporative cooling and melting rates. This produced weaker low-level downdrafts and weaker, shallower cold pools. While the precise mechanisms of supercell tornadogenesis are still up for debate, studies have suggested that tornadoes are often linked to the rear flank downdraft (RFD), which can transport vertical vorticity to the surface, baroclinically generate horizontal

Full access
Paul M. Markowski, Timothy P. Hatlee, and Yvette P. Richardson

reflectivity isopleth observed by DOW7 also is overlaid at 0108, 0116, 0124, and 0132 UTC (blue contours). The locations of the photographs that appear in Figs. 11a–c are indicated by the green, black, and purple camera icons, respectively (the photograph time are indicated beside the icons). Following a brief explanation of the available data and the analysis methods in section 2 , a detailed description of the chain of events that led to tornadogenesis are presented in sections 3 and 4 . The

Full access
Joshua Wurman, Yvette Richardson, Curtis Alexander, Stephen Weygandt, and Peng Fei Zhang

1. Introduction Tornadic storms, and tornadogenesis in supercellular storms have been observed visually, with surface observations, and with radars for decades (e.g., Stout and Huff 1953 ; Ludlam 1963 ; Fujita 1975 ; Ray et al. 1975 , 1981 ; Brandes 1977 , 1978 , 1981 , 1984a ; Fujita and Wakimoto 1982 ; Brandes et al. 1988 ; Dowell and Bluestein 1997 , 2002a , b ; Wakimoto and Liu 1998 ; Trapp 1999 ; Trapp et al. 1999 ; Wakimoto and Cai 2000 ; Bluestein

Full access
Wataru Mashiko, Hiroshi Niino, and Teruyuki Kato

1. Introduction Significant progress has been made in our understanding of supercell storms through Doppler radar measurements and three-dimensional numerical simulations. However, our knowledge of the dynamics of tornadogenesis in supercell storms is still limited because of difficulties in collecting detailed observational data with good spatial and temporal resolutions and in numerically simulating a tornado that is more than two orders of magnitude smaller than a supercell storm. The

Full access
Alexander D. Schenkman, Ming Xue, and Alan Shapiro

is the frictional generation of near-surface horizontal vorticity associated with the intensification of the inflow into the Minco mesovortex. This flow profile takes about 10 min to develop after the genesis of the Minco mesovortex. We speculate that weaker, shorter-lived mesovortices may dissipate before a rotor circulation develops, which could preclude tornadogenesis. The important role of surface drag and the rotor circulation raises a number of questions that will be the focus of future

Full access
Dongmin Kim, Sang-Ki Lee, and Hosmay Lopez

1. Introduction The National Oceanic and Atmospheric Administration’s Storm Prediction Center (NOAA SPC) provides a 1–8-day lead-time severe weather forecast, including tornado watches. This severe weather forecast is based on synoptic-scale atmospheric instability [e.g., convective available potential energy (CAPE) and low-level wind shear (LLWS)] from numerical weather forecast models and observations. To extend the current forecast lead time for tornadogenesis to subseasonal time scales (i

Restricted access
Robert Davies-Jones

1. Introduction The rain curtain associated with the hook-shaped appendage to a supercell’s radar echo is usually regarded as a passive indicator of a possible tornado. Close-range airborne and mobile radar observations made during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX; Rasmussen et al. 1994 ) in 1994–95 and in subsequent follow-up experiments have revealed the presence of a hook echo prior to tornadogenesis in every case. Development of the hook is

Full access
Sho Yokota, Hiroshi Niino, Hiromu Seko, Masaru Kunii, and Hiroshi Yamauchi

LMCs ( Markowski et al. 2002 , 2003 , 2008 ; Straka et al. 2007 ). Because this horizontal vorticity and convective updraft are intensified by environmental low-level vertical shear and water vapor, respectively, the preexisting low-level environment is especially important for tornadogenesis ( Thompson et al. 2003 ; Craven and Brooks 2004 ; Markowski and Richardson 2014 ; Parker and Dahl 2015 ). Even in the presence of MMCs and LMCs, however, tornadoes are not necessarily generated. Trapp

Full access
Tao Tao and Tetsuro Tamura

1. Introduction To understand the mechanism of supercell tornadogenesis, identifying the responsible vorticity sources is a vitally important issue. Despite several decades of study on this issue, a complete understanding remains ambiguous. Previous studies included field observations and idealized numerical simulations. It was suggested that the baroclinic effects are prominent in generating the vorticity of tornadoes (e.g., Davies-Jones and Brooks 1993 ; Adlerman et al. 1999 ; Straka et al

Full access