A Tale of Two Rapidly Intensifying Supertyphoons
Hagibis (2019) and Haiyan (2013)
I.-I. Lin, Robert F. Rogers, Hsiao-Ching Huang, Yi-Chun Liao, Derrick Herndon, Jin-Yi Yu, Ya-Ting Chang, Jun A. Zhang, Christina M. Patricola, Iam-Fei Pun, and Chun-Chi Lien

https://doi.org/10.1175/BAMS-D-20-0223.2
Corresponding author: Dr. I-I Lin, iilin@as.ntu.edu.tw; Dr. Robert Rogers, robert.rogers@noaa.gov
This is a supplement to https://doi.org/10.1175/BAMS-D-20-0223.1
©2021 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

AFFILIATIONS: Lin, Huang, Liao, Chang, and Lien—Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Rogers—NOAA/AOML/Hurricane Research Division, Miami, Florida; Herndon—Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin; Yu—Department Of Earth System Science, University of California, Irvine, Irvine, California; Zhang—NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida; Patricola—Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Pun—Institute of Hydrological and Ocean Sciences, National Central University, Taoyuan, Taiwan
Supplementary to results

3DPWP results. Period 1 (P1). Four sensitive experiments were conducted to elucidate the different impacts from individual parameters. As in Fig. ES8a and Table ES1, the cooling effect of Hagibis’s observed run was ~0.57°C (blue dashed profile), but the cooling of the size sensitivity run was ~0.29°C (green dashed profile). This means that if Hagibis’s size was to be smaller, i.e., of similar size as Haiyan, the cooling effect would be 0.29°C (and not the 0.57°C in the observed run). Figure ES8b compares the results of the Uh sensitivity run (orange dashed profile) and Hagibis’s observed run (blue dashed profile). Because there was little difference in the translation speed (Uh) of the two supertyphoons (STYs) during P1, there was also little difference in the cooling results (i.e., orange and blue dashed profiles almost overlap). Similar results are in Fig. ES8d, i.e., the salinity sensitivity run. As for Fig. ES8c (i.e., the combined size + Uh run), the difference is mainly from the size impact (i.e., Fig. ES8a) and not the Uh impact (i.e., Fig. ES8b).

3DPWP results. Period 2 (P2). The sensitivity test results of P2 are in Fig. ES7 and Table ES3. It can be seen that both size and Uh are differentiating factors between the 2 STYs during P2, and both have contributions to cooling. Therefore the combined size + Uh impact is the most evident (Fig. ES7c). Similar to P1, salinity was not a key differentiating factor between the two STYs and the difference was minimal.

Tropical cyclone size. In addition to Figs. 4a and 4b (RMW and R34), the complete size information from the JTWC best track, i.e., including also R50 and R64, is shown in Fig. ES6. ASCAT ocean surface wind data are also included for additional size information (Fig. 11).

Argo profiles. Two during–tropical cyclone (TC) Argo profiles were found. According to the nearest 6-hourly track location, details are given below:

- Haiyan P2 (green profile 1 in Fig. 0d of the main text): Nearest TC track location: 1107:00 UTC; TC size (D50): 213 km; Uh: 8.5 m s⁻¹; transit time = 7 h; Argo_time: 1107:07 UTC.
- Haiyan P2 (green profile 2 in Fig. 9d of the main text): Nearest TC track location: 1107:12 UTC; TC size (D50): 232 km; Uh: 11 m s⁻¹; transit time = 5.8 (6) h; Argo_time: 1107:18 UTC.

Equivalent OHC estimation. When comparing the pre-TC ocean heat content (OHC) with the eastern North Pacific TC, e.g., Hurricane Patricia in 2015, in addition to the regular OHC, “equivalent” OHC (E-OHC; as proposed by Shay and Brewster 2010), was also calculated. This is because eastern North Pacific has high upper-ocean stratification. Thus, Shay and Brewster (2010) proposed the calculation of the E-OHC, to factor in the stratification effect. Using method from Shay and Brewster (2010), we generated two maps of the stratification (S) parameter (S factor), one for October climatology and the other for November climatology (Figs. ES9 and ES10). Indeed, the eastern North Pacific is featured by very high S factor, as compared to the western North Pacific. Pre-TC E-OHC for the three super TCs, i.e., Hagibis, Haiyan, and Patricia, was also calculated and compared. As in Table ES5, the original OHC for Patricia was slightly lower than the two western North Pacific cases, i.e., Haiyan and Hagibis. With consideration of the S factor, the E-OHC of the three cases are similar and comparable.
Table ES1. Three-dimensional PWP results for P1. Because there are five 6-hourly points for each case (i.e., 1200 UTC 6 Oct to 1200 UTC 7 Oct for Hagibis and 0000 UTC 5 Nov to 0000 UTC 6 Nov for Haiyan), for each experiment, the values are the average over the five points. Results of the two observed (obs.) runs are in the top section, while the results of the four sensitivity (sens.) runs are in the bottom section.

<table>
<thead>
<tr>
<th>Input TC size in D50 (km)</th>
<th>Input TC Uh (m s(^{-1}))</th>
<th>SST(_{\text{preTC}}) (°C) (from Argo)</th>
<th>SST(_{\text{duringTC}}) (°C) (3DPWP output)</th>
<th>Cooling (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagibis obs. run</td>
<td>266.8 ± 91.2</td>
<td>7.7 ± 0.6</td>
<td>30.33 ± 0.20 (4 Argo)</td>
<td>29.76 ± 0.30</td>
</tr>
<tr>
<td>Haiyan obs. run</td>
<td>157.4 ± 53.2</td>
<td>7.8 ± 0.5</td>
<td>29.05 ± 0.59 (3 Argo)</td>
<td>28.94 ± 0.05</td>
</tr>
<tr>
<td>Sens. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size sens. run</td>
<td>157.4 ± 53.2</td>
<td>7.7 ± 0.6</td>
<td>30.33 ± 0.20 (4 Argo)</td>
<td>30.03 ± 0.06</td>
</tr>
<tr>
<td>Uh sens. run</td>
<td>266.8 ± 91.2</td>
<td>7.8 ± 0.5</td>
<td>30.33 ± 0.20 (4 Argo)</td>
<td>29.77 ± 0.30</td>
</tr>
<tr>
<td>Size + Uh sens. run</td>
<td>157.4 ± 53.2</td>
<td>7.8 ± 0.5</td>
<td>30.33 ± 0.20 (4 Argo)</td>
<td>30.04 ± 0.06</td>
</tr>
<tr>
<td>Salinity sens. run</td>
<td>266.8 ± 91.2</td>
<td>7.7 ± 0.6</td>
<td>30.33 ± 0.20 (4 Argo)</td>
<td>29.78 ± 0.28</td>
</tr>
</tbody>
</table>

Table ES2. As in Table ES1, but for the corresponding flux results for P1. \(\Delta T = T_s - T_a\) and \(\Delta q = q_s - q_a\). \(T_s\) is during-TC SST. See also Appendix C.

<table>
<thead>
<tr>
<th>SST(_{\text{duringTC}}) (°C) (3DPWP)</th>
<th>(T_s) (°C) (CFS)</th>
<th>(q_s) (g kg(^{-1})) (SST(_{\text{duringTC}}))</th>
<th>(T_a) (°C) (CFS)</th>
<th>(q_a) (g kg(^{-1})) (CFS)</th>
<th>(\Delta T) (°C)</th>
<th>(\Delta q) (g kg(^{-1}))</th>
<th>SHF (W m(^{-2}))</th>
<th>LHF (W m(^{-2}))</th>
<th>Total flux (W m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagibis obs. run</td>
<td>29.76 ± 0.30</td>
<td>28.42 ± 0.35</td>
<td>25.74 ± 0.31</td>
<td>19.33 ± 0.28</td>
<td>1.34 ± 0.60</td>
<td>6.42 ± 0.25</td>
<td>82 ± 23</td>
<td>1,169 ± 433</td>
<td>1,250 ± 433</td>
</tr>
<tr>
<td>Haiyan obs. run</td>
<td>28.94 ± 0.05</td>
<td>27.78 ± 1.11</td>
<td>24.61 ± 0.16</td>
<td>19.37 ± 0.23</td>
<td>1.15 ± 1.10</td>
<td>5.24 ± 0.09</td>
<td>69 ± 65</td>
<td>853 ± 212</td>
<td>923 ± 240</td>
</tr>
<tr>
<td>Sens. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size sens. run</td>
<td>30.03 ± 0.06</td>
<td>28.42 ± 0.35</td>
<td>26.15 ± 0.08</td>
<td>19.33 ± 0.28</td>
<td>1.62 ± 0.40</td>
<td>6.82 ± 0.30</td>
<td>106 ± 33</td>
<td>1,264 ± 529</td>
<td>1,370 ± 554</td>
</tr>
<tr>
<td>Uh sens. run</td>
<td>29.77 ± 0.30</td>
<td>28.42 ± 0.35</td>
<td>25.75 ± 0.30</td>
<td>19.33 ± 0.28</td>
<td>1.35 ± 0.57</td>
<td>6.43 ± 0.28</td>
<td>82 ± 19</td>
<td>1,171 ± 435</td>
<td>1,253 ± 435</td>
</tr>
<tr>
<td>Size + Uh sens. run</td>
<td>30.04 ± 0.06</td>
<td>28.42 ± 0.35</td>
<td>26.16 ± 0.08</td>
<td>19.33 ± 0.28</td>
<td>1.62 ± 0.39</td>
<td>6.83 ± 0.30</td>
<td>106 ± 32</td>
<td>1,266 ± 530</td>
<td>1,372 ± 554</td>
</tr>
<tr>
<td>Salinity sens. run</td>
<td>29.78 ± 0.28</td>
<td>28.42 ± 0.35</td>
<td>25.78 ± 0.28</td>
<td>19.33 ± 0.28</td>
<td>1.36 ± 0.58</td>
<td>6.45 ± 0.24</td>
<td>83 ± 23</td>
<td>1,176 ± 440</td>
<td>1,260 ± 442</td>
</tr>
</tbody>
</table>

Table ES3. As in Table ES1, but for period 2 (P2, the post-RI period).

<table>
<thead>
<tr>
<th>Input TC size in D50 (km)</th>
<th>Input TC Uh (m s(^{-1}))</th>
<th>SST(_{\text{preTC}}) (°C) (from Argo)</th>
<th>SST(_{\text{duringTC}}) (°C) (3DPWP output)</th>
<th>Cooling (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagibis obs. run</td>
<td>447.2 ± 45.4</td>
<td>4.5 ± 1.1</td>
<td>29.62 ± 0.10 (10 Argo)</td>
<td>28.34 ± 0.26</td>
</tr>
<tr>
<td>Haiyan obs. run</td>
<td>231.6 ± 25.6</td>
<td>9.5 ± 0.9</td>
<td>29.24 ± 0.23 (20 Argo)</td>
<td>29.06 ± 0.01</td>
</tr>
<tr>
<td>Sens. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size sens. run</td>
<td>231.6 ± 25.6</td>
<td>4.5 ± 1.1</td>
<td>29.62 ± 0.10 (10 Argo)</td>
<td>28.96 ± 0.17</td>
</tr>
<tr>
<td>Uh sens. run</td>
<td>447.2 ± 45.4</td>
<td>9.5 ± 0.9</td>
<td>29.62 ± 0.10 (10 Argo)</td>
<td>29.00 ± 0.02</td>
</tr>
<tr>
<td>Size + Uh sens. run</td>
<td>231.6 ± 25.6</td>
<td>9.5 ± 0.9</td>
<td>29.62 ± 0.10 (10 Argo)</td>
<td>29.34 ± 0.01</td>
</tr>
<tr>
<td>Salinity sens. run</td>
<td>447.2 ± 45.4</td>
<td>4.5 ± 1.1</td>
<td>29.62 ± 0.10 (10 Argo)</td>
<td>28.39 ± 0.25</td>
</tr>
</tbody>
</table>
Table ES4. As in Table ES2, but for the flux results for P2.

<table>
<thead>
<tr>
<th></th>
<th>SST<sub>duringTC</sub> (°C)</th>
<th>T<sub>a</sub> (°C)</th>
<th>q<sub>s</sub> (g kg<sup>–1</sup>)</th>
<th>q<sub>a</sub> (g kg<sup>–1</sup>)</th>
<th>ΔT (°C)</th>
<th>Δq (g kg<sup>–1</sup>)</th>
<th>SHF (W m<sup>–2</sup>)</th>
<th>LHF (W m<sup>–2</sup>)</th>
<th>Total flux (W m<sup>–2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagibis obs. run</td>
<td>28.34 ± 0.26</td>
<td>29.29 ± 0.33</td>
<td>25.62 ± 0.52</td>
<td>21.25 ± 0.45</td>
<td>−0.95 ± 0.58</td>
<td>4.37 ± 0.96</td>
<td>−81 ± 51</td>
<td>957 ± 163</td>
<td>876 ± 213</td>
</tr>
<tr>
<td>Haiyan obs. run</td>
<td>29.06 ± 0.01</td>
<td>27.65 ± 0.77</td>
<td>25.73 ± 0.40</td>
<td>19.15 ± 0.87</td>
<td>1.41 ± 0.78</td>
<td>6.57 ± 1.07</td>
<td>138 ± 78</td>
<td>1,689 ± 364</td>
<td>1,827 ± 416</td>
</tr>
<tr>
<td>Sens. run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size sens. run</td>
<td>28.96 ± 0.17</td>
<td>29.29 ± 0.33</td>
<td>26.56 ± 0.40</td>
<td>21.25 ± 0.45</td>
<td>−0.32 ± 0.49</td>
<td>5.31 ± 0.81</td>
<td>−28 ± 41</td>
<td>1,166 ± 124</td>
<td>1,138 ± 164</td>
</tr>
<tr>
<td>Uh sens. run</td>
<td>29.00 ± 0.02</td>
<td>29.29 ± 0.33</td>
<td>26.62 ± 0.21</td>
<td>21.25 ± 0.45</td>
<td>−0.29 ± 0.34</td>
<td>5.37 ± 0.62</td>
<td>−25 ± 29</td>
<td>1,180 ± 81</td>
<td>1,155 ± 107</td>
</tr>
<tr>
<td>Size + Uh sens. run</td>
<td>29.34 ± 0.01</td>
<td>29.29 ± 0.33</td>
<td>27.15 ± 0.19</td>
<td>21.25 ± 0.45</td>
<td>0.06 ± 0.34</td>
<td>5.90 ± 0.62</td>
<td>4 ± 28</td>
<td>1,297 ± 75</td>
<td>1,301 ± 100</td>
</tr>
<tr>
<td>Salinity sens. run</td>
<td>28.39 ± 0.25</td>
<td>29.29 ± 0.33</td>
<td>25.69 ± 0.52</td>
<td>21.25 ± 0.45</td>
<td>−0.90 ± 0.58</td>
<td>4.44 ± 0.95</td>
<td>−77 ± 51</td>
<td>973 ± 162</td>
<td>896 ± 211</td>
</tr>
</tbody>
</table>

Table ES5. OHC, S-factor, and equivalent OHC (i.e., E-OHC) comparison of the three TCs. The S factor in the table is the averaged value from the S-factor values extracted along the RI track locations of each TC in Figs. ES9 and ES10.

<table>
<thead>
<tr>
<th></th>
<th>Hagibis</th>
<th>Haiyan</th>
<th>Patricia</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC (kJ cm<sup>–2</sup>)</td>
<td>121–150</td>
<td>93–121</td>
<td>90–104</td>
</tr>
<tr>
<td>Estimated based on Argo pre-TC profiles and satellite measurements in this work</td>
<td>Estimated based on Argo pre-TC profiles and satellite measurements in this work, and Huang et al. (2017)</td>
<td>From Rogers et al. (2017) (satellite measurements) and Huang et al. (2017) (Argo in situ pre-TC profiles)</td>
<td></td>
</tr>
<tr>
<td>S factor</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
</tr>
<tr>
<td>E-OHC (kJ cm<sup>–2</sup>)</td>
<td>218–270</td>
<td>195–254</td>
<td>225–260</td>
</tr>
</tbody>
</table>
Fig. ES1. Converting (left) T_a and (right) q_a from the NCEP sigma 995 level (i.e., ~40 m) to 10 m altitude, based on in situ observed relationship of historical TC inner-core dropsonde observations (Zhang et al. 2013, 2020) over category-4 and category-5 TCs of the North Atlantic.

Fig. ES2. As in Figs. 1c and 1d, but for RH at midlevel.
Fig. ES3. Observation of TC structure and ERC from the NRL microwave imagery for Hagibis between 0506 UTC 6 Oct and 0359 UTC 11 Oct 2019 (see Fig. ES4). These images are after quality control. The images with poor quality or missing the primary features of Hagibis are discarded. Data source: 85 GHz-H archive from www.nrlmry.navy.mil/TC.html.
Fig. ES4. Continued from Fig. ES3.
Fig. ES5. As in Figs. 2c and 2d, but also showing the cold ocean eddy (COE) location. (left) Pre-TC ocean heat content (OHC). (right) Pre-TC sea surface height anomaly (SSHA).

Fig. ES6. As in Figs. 4a and 4b, but for the complete TC size information from the JTWC.
Fig. ES7. Three-dimensional PWP results during P2. (a) Size sensitivity run (green dashed profile) vs Hagibis’s observed run (blue dashed profile). (b) As in (a), but for Uh sensitivity run (orange dashed profile). (c) As in (a), but for size + Uh sensitivity run (purple dashed profile). (d) As in (a), but for salinity run (pink dashed profile).
Fig. ES8. As in Fig. ES7, but for P1.
Fig. ES9. S-factor map [based on method in Shay and Brewster (2010)] for October climatology, with Hagibis’s and Patricia’s tracks depicted. The ocean temperature and salinity profiles used in the S-factor calculation is from the *World Ocean Atlas (WOA) 13*.

Fig. ES10. As in Fig. ES9, but for November climatology, with Haiyan’s track depicted.
Fig. ES11. As in Fig. ES3, but for Haiyan between 0338 UTC 4 Nov and 0019 UTC 8 Nov 2013.
Fig. ES12. Time series to objectively identify the convection evolution of the two storms: (a) Hagibis and (b) Haiyan. Both the IR brightness temperature (Tb) ring determined by the advanced Dvorak technique (ADT) and the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) ring scores are measures of the convective organization (presence of a ring) and magnitude of the convection. Objective measures of RMW (from Kossin et al. 2007) are also provided to complement Fig. 4 that shows JTWC best track RMW and to provide more detail on the inner-core structure change.

Of note during P2 (6–7 Nov 2013) is that Haiyan IR Tbs continue to cool up to landfall consistent with the increase in intensity. ARCHER scores also reach a peak during this period. By contrast the Hagibis IR Tb values during P2 (9 Oct 2019) was weaker than Haiyan's during P2. While these values are proxies for TC intensity, they show some detail of the convection response during the two periods of interest.
References

