Supplemental Material

© Copyright 2020 American Meteorological Society
Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).
Supplemental Material

Vertical Structure of the Upper Indian Ocean Thermal Variability

Yuanlong Li1,2,3,4, Weiqing Han5, Fan Wang1,2,3, Lei Zhang5, Jing Duan1,2,3

1CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
3Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
4CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
5Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, US

Corresponding Author:
Yuanlong Li
Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Email: liyuanlong@qdio.ac.cn
Fig. S1. (a) 6-year low-pass filtered IO basin-mean temperature profile, (b) unfiltered temperature profiles of the south IO and (c) the north IO derived from ensemble-mean observation. (d)-(f) are the same as (a)-(c) but from HYCOM MR. Ensemble-mean observation is the average of WOA, IAP, and EN4. Solid contours highlight 0 values, and dashed contours are ±0.1, ±0.2, ±0.3, ±0.4 K.
Fig. S2. The leading two EOF modes of the IO basin-mean temperature from (a) WOA, (b) IAP, and (c) EN4.
Fig. S3. (a) The upper-layer OHC (0-400 m) of the IO from WOA, IAP and EN4 and EOF mode 1. (b) The IO basin-mean SST based on HadISST data and EOF mode 1. The 6-year low-pass filtered time series are plotted as thick curves. (c) The IO basin-mean SST based on HadISST data and EOF mode 2. EOF modes are derived from the ensemble-mean observational data.
Fig. S4. SST anomalies (K) regressed onto the 6-year running trend of the 0-400 m OHC of MR. SST anomalies are derived from (a) MR, (b) PAC, and (c) TAU. Stippling indicates insignificant coefficients below 95% confidence level.
Fig. S5. Regression maps of (a) T_1 (0-60 m average), (b) T_2 (60-400 m average), and (c) SST of MR onto Nino-3.4 index. Stippling indicates insignificant coefficients below 95% confidence level. (d)-(f) are the same as (a)-(c) but regressed onto DMI.
Fig. S6. Regression maps of (a) Q_T, (b) SWR, and (c) 10-m winds (vectors) and wind speed (color shading) and (d) total cloud cover onto Nino-3.4 index. Stippling indicates insignificant coefficients below 95% confidence level. (e)-(h) are the same as (a)-(d) but regressed onto DMI.
Fig. S7. (a) 6-year low-pass filtered SST anomalies of the tropical IO (30°-120°E, 25°S-25°N) and the Inter-basin SST gradient ΔSST (tropical IO minus tropical Pacific; tropical Pacific is defined as 160°E-100°W, 25°S-25°N), compared with 6-year low-passed Mode 1. (b) 6-year low-passed 10-m zonal wind (u_{10}) of the western and central tropical Pacific (140°E-140°W, 20°S-20°N) and ITF heat transport, compared with 6-year low-passed ΔSST.