Diverse impacts of Indian Ocean Dipole on El Niño-Southern Oscillation

Lei Zhang¹*, Weiqing Han¹, Gerald A. Meehl², Aixue Hu², Nan Rosenbloom², Toshiaki Shinoda³, Michael J. McPhaden⁴

¹ Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

² National Center for Atmospheric Research, Boulder, Colorado

³ Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

⁴ National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory, Seattle, Washington

Contents of this file

Figures S1–S13
Figure S1. (a) The DJF Niño-3.4 index during observed El Niño years. Blue denotes Niño-3.4 index in observations and red for IOGA pacemaker experiments. The El Niño years are separated into two categories based on whether they are forced by the Indian Ocean, which is defined by whether the Niño-3.4 index in the ensemble average of IOGA experiments (which isolates the tropical Indian Ocean forcing) exceeds 25% of the Niño-3.4 in observations. The blue dashed line denotes one standard deviation of the Niño-3.4 index in observations. The error bar denotes the uncertainty defined as 90% confidence interval across the ten ensemble members. (b) As in (a), but for SON DMI in observations (blue) and POGA pacemaker experiments (red).
Figure S2. SSTA tendency during independent pIOD-La Niña (left column) and independent pIOD-El Niño (right column) in the ensemble mean of IOGA experiments. Shown are differences of bimonthly-mean SSTA from previous bimonthly season. Unit is °C.
Figure S3. (a) Composite of SON mean SLP anomalies (shading, hPa) during the independent pIOD events co-occurring with La Niña. (b) Same as (a) but for the composite of the independent pIOD events that co-occur with El Niño. (c) Differences between (a) and (b). Purple dashed box denotes the region in which SST is restored toward observations in the IOGA experiments. (d)-(f) As in (a)-(c), except for the DJF season. Shown are the results that are statistically significant at the 90% confidence level.
Figure S4. Results from atmospheric model experiments using ECHAM4.6. For both runs, the model was integrated for 40 years, and the last 36 years are analyzed. Both runs are forced with pIOD SST + monthly SST climatology patterns (shading; °C), one with (a)(b) and the other without (c)(d) thermocline ridge warming (see Fig. 4). Shown are SON mean 850hPa wind anomalies (vector; m s⁻¹) (left column) and rainfall anomalies (shading; mm day⁻¹) (right column) compared with the control run simulation forced with monthly SST climatology. (e)(f) Differences between the two experiments that are statistically significant at 90% confidence level.
Figure S5. Same as Fig. S3, but for dynamic sea level anomalies (shading; cm) and surface wind stress anomalies (vectors, N m$^{-2}$).
Figure S6. Differences of SON-mean sea level composites of pIOD events during the satellite altimeter era of 1993-present in (a) Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO), (b) IOGA and (c) POGA experiments. Unit is cm. Shown are differences between pIOD events that cause weak warming or cooling (1994, 2011, 2012) and strong warming (1997, 2002, 2006) in the tropical Pacific in the ensemble mean of IOGA experiments (see Fig. 3b).
Figure S7. (a) Composite of JJA-mean SSTA (shading, °C) during the independent pIOD events co-occurring with La Niña (1925, 1949, 1967) in the ensemble mean results of the POGA experiments. (b) Same as (a) but for SON-mean results. (c)(d) Same as (a)(b) but for sea level (shading; cm) and surface wind stress anomalies (vectors, N m⁻²). (e)(f) As in (a)(b), except for observational results using ERSSTv3b and ERA-20C.
**Figure S8.** Same as Fig. S3, but for composites of SST and surface wind stress anomalies during (a)(d) thermocline ridge warming and (b)(e) cooling years. (c)(f) Differences between the two composites. The years are chosen using an SST index defined as SON-mean SSTA averaged over thermocline ridge region, which is denoted by the boxes in the figure (60°E-85°E, 15°S-7°S).
Figure S9. Results from atmospheric general circulation model experiments using ECHAM4.6. For both runs, the model was integrated for 40 years, and the last 36 years are analyzed. Shown are (a)(b) SON-mean 850hPa wind anomalies (vector; m s$^{-1}$) and (c)(d) rainfall anomalies (shading; mm day$^{-1}$) forced by SCTR warming and cooling (shading; °C), respectively. Black vectors in (a)(b) and stippling in (c)(d) denote results that are statistically significant at the 90% confidence level.
Figure S10. Composites of precipitation anomalies (shading, mm day\(^{-1}\)) and surface wind stress (vector, N m\(^{-2}\)) anomalies using ERSSTv3b and ERA-20C data sets, respectively. (a) Composite for the independent pIOD events co-occurring with La Niña (1925, 1949, 1967). (b) Composite of the independent pIOD events that co-occur with El Niño (1935, 1944, 1946, 1965, 2006).
Figure S11. Same as Fig. S3, but for the composites of SSTA (shading; °C) and surface wind stress anomalies (vector; N m$^{-2}$) during dependent pIOD events that (a)(d) do not cause (1977, 1982, 1994, 1997, 2002) and (b)(e) cause El Niño (1972, 1986) in the ensemble mean of IOGA pacemaker experiments. Years are selected based on Figure 3.
Figure S12. Same as Fig. S3, but for composites of all pIOD events that (a)(d) do not co-occur and (b)(e) co-occur with El Niño.
Figure S13. Composites of SSTA during pIOD events that co-occur with La Niña (a)(d) and El Niño (b)(e), and their differences (c)(f). Unit is °C. Results are obtained from the forty members of the CESM1 large-ensemble (CESM1-LE) simulations (1920-2013). The ensemble-mean results have been subtracted from each ensemble member to remove the influences of external forcing (both anthropogenic and natural). (a)-(c) show SON-mean results, and (d)-(f) for DJF-mean results. Shown are the results that are statistically significant at the 90% confidence level.