Supplemental Material

Journal of Climate

Variations in Summer Extreme Hot–Humid Events over Eastern China and the Possible Associated Mechanisms

https://doi.org/10.1175/JCLI-D-22-0695.1

© Copyright 2023 American Meteorological Society (AMS)

For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 USC §107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require AMS’s permission. republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
Variations in Summer Extreme Humid-Heat Events over Eastern China and the Possible Associated Mechanisms

Wenyue Hea, d, Huopo Chena, b, *, and Jiehua Mac, b

a Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

c Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

d University of Chinese Academy of Sciences, Beijing, China

Corresponding author: Chen Huopo (chenhuopo@mail.iap.ac.cn)

Address: Nansen-Zhu International Research Centre (NZC), Institute of Atmospheric Physics, Chinese Academy of Sciences, PO Box 9804, Beijing 100029, China

Email: chenhuopo@mail.iap.ac.cn
Fig. S1. Plots of regression maps of (a) Z200 (b) Z500 (c) Z850 (unit: gpm), (d) 200-hPa and (e) 850-hPa wind divergent (unit: s\(^{-1}\)) to the EHHE index in summer during the period of 1961–2020. Stippling in (a) – (e) denote the grids in which the anomalies are significant at the 95% confidence level using Student's T test.
Fig. S2. Plots of regression maps of (a) 200-hPa wind divergent (unit: \(s^{-1}\)), (b) vertical velocity (shading; units: \(10^{-3} \text{ Pa s}^{-1}\)) and vertical–horizontal cross section averaged along 110°–122°E for vertical wind (vector; units: \(\text{m s}^{-1}\)) to SST1 in summer during the period of 1961–2020. Stippling in (a) (b) denote the grids in which the anomalies are significant at the 95% confidence levels using Student's T test.
Fig. S3. The composite difference of summer (a) 300-hPa (b) 500-hPa and (c) 850-hPa vertical velocity (units: 10^{-3} Pa s$^{-1}$) between the experiments SEN1 and CTL. The black dots areas in (a), (b) and (c) indicate significant regression at 95% confidence level with the Student's T test.
Fig. S4. Plots of regression maps of vertical velocity (shading; units: 10^{-3} Pa s$^{-1}$) and vertical–horizontal cross section averaged along 110°–122°E for vertical wind (vector; units: m s$^{-1}$) to SSTI2 in summer during the period of 1961–2020. Stippling denote the grids in which the anomalies are significant at the 95% confidence levels using Student's T test.
Fig. S5. Plots of regression maps of (a) 850-hPa, (b) 200-hPa, (c) 200-hPa wind divergent (unit: s⁻¹), (d) vertical velocity (shading; units: 10⁻³ Pa s⁻¹) and vertical–horizontal cross section averaged along 110°–122°E for vertical wind (vector; units: m s⁻¹) to the sign-reversed SICI in summer during the 1961–2020 period. Stippling in (a) - (d) denote the grids in which the anomalies are significant at the 95% confidence levels using Student's T test.