Hydrological climate-impact projections for the Rhine river: GCM-RCM uncertainty and separate temperature and precipitation effects.

Journal of Hydrometeorology

Thomas Bosshard¹, Sven Kotlarski¹, Massimiliano Zappa², Christoph Schär¹

¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
²Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

*Corresponding author:
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-60176 Norrköping, Sweden
E-Mail: thomas.bosshard@smhi.se

1 Introduction

This electronic supplementary material contains in section 2 additional figures of the seasonal spatial patterns of changes in the variables temperature T, precipitation P, evapotranspiration E and runoff R for all the GCM-RCM chains and the two scenario (SCE) periods 2021-2050 and 2070-2099, both relative to the control (CTL) period 1980-2009. Further, section 3 shows the mean annual cycle of the water balance components in the CTL period as well as their relative changes for the two SCE periods at additional gauges.
2 Spatial pattern of changes of atmospheric variables

2.1 SCE period 2021-2050

2.1.1 Temperature

Figure ESM1: Change of winter temperature (T) in the sub-basins for the SCE-period 2021-2050 vs. CTL-period 1979-2008 [°C]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM2: Same as in Fig. ESM1 but for spring.
Figure ESM3: Same as in Fig. ESM1 but for summer.

Figure ESM4: Same as in Fig. ESM1 but for autumn.
2.1.2 Precipitation

Figure ESM5: Change of winter precipitation (P) in the sub-basins for the SCE-period 2021-2050 vs. CTL-period 1979-2008 [%]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM6: Same as in Fig. ESM5 but for spring.
Figure ESM7: Same as in Fig. ESM5 but for summer.

Figure ESM8: Same as in Fig. ESM5 but for autumn.
2.1.3 Evapotranspiration

Figure ESM9: Change of winter evapotranspiration (E) in the sub-basins for the SCE-period 2021-2050 vs. CTL-period 1979-2008 [%]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM10: Same as in Fig. ESM9 but for spring.
Figure ESM11: Same as in Fig. ESM9 but for summer.

Figure ESM12: Same as in Fig. ESM9 but for autumn.
2.2 SCE period 2070-2099

2.2.1 Temperature

Figure ESM13: Change of spring temperature (T) in the sub-basins for the SCE-period 2070-2099 vs. CTL-period 1979-2008 [°C]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM14: Same as in Fig. ESM13 but for autumn.
2.2.2 Precipitation

Figure ESM15: Change of spring precipitation (P) in the sub-basins for the SCE-period 2070-2099 vs. CTL-period 1979-2008 [%]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM16: Same as in Fig. ESM15 but for autumn.
2.2.3 Evapotranspiration

Figure ESM17: Change of spring evapotranspiration (E) in the sub-basins for the SCE-period 2070-2099 vs. CTL-period 1979-2008 [%]. Each panel shows the values for a specific GCM-RCM chain (indicated in the panel’s title).

Figure ESM18: Same as in Fig. ESM17 but for autumn.
3 Changes in the annual cycle

Figure ESM19: Mean annual cycle of the water balance quantities precipitation, evapotranspiration and runoff in the CTL period 1979-2008 for additional gauges along the Rhine river. The depicted precipitation includes a water balance correction as derived by the hydrological model PREVAH. Evapotranspiration and runoff are estimated by PREVAH. Scales are identical.
Figure ESM20: Relative changes in the mean annual cycle of precipitation (P), evapotranspiration (E) and runoff (R) at nine gauges along the Rhine river. Each panel pair shows the changes relative to the CTL period 1979-2008 for the SCE period 2021-2050 on the left side and for the SCE period 2070-2099 on the right side. The gauge name is indicated in the top left corner of each panel pair. The scales are identical except for the gauge Diepoldsau.