Supplemental Material

Journal of Hydrometeorology
Validating the Land–Atmosphere Coupling Behavior in Weather and Climate Models Using Observationally Based Global Products
https://doi.org/10.1175/JHM-D-20-0183.1

© Copyright 2021 American Meteorological Society (AMS)
For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 USC §107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
Supplemental Material

Validating the Land-Atmosphere Coupling Behavior in Weather and Climate Models Using Observationally Based Global Products

ABEDEH ABDOLGHAFOORIAN AND PAUL A. DIRMEYER

Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
Supplemental Material Content

Figure S1. Global distribution of the Pearson correlation coefficient (R) between anomalies of latent heat flux and soil moisture from six observationally-based FLUXCOM RS+METEO products for four different seasons: March–May (MAM), June–August (JJA), September–November (SON), and December–February (DJF). $<R>$ shows the average of R over grid cells which have a finite value of R in all four observational products. P shows the percentage of grid cells with positive significant R (p-value<0.01). The histogram on the lower left of each map shows the frequency distribution of R. Bar colors of histograms correspond to color-coding of the colorbar.

Figure S2. Spatial correlation of R(SM,LE) maps from pairings of FLUXCOM RS+METEO products for four different seasons.

Figure S3. Global distribution of the terrestrial coupling index between anomalies of sensible heat flux and soil moisture ($I_{SM:H}$) from two observationally-based (left) FLUXCOM and (right) GEWEX products for four different seasons: March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF). $<I>$ shows the average of $I_{SM:H}$ over grid cells which have a finite value of $I_{SM:H}$ in all four observational products. P shows the percentage of grid cells with negative significant I (p-value<0.01). The histogram on the lower left of each map shows the frequency distribution of $I_{SM:H}$.

Figure S4. As in Figure S3, but for the five forecast models.

Figure S5. Spatial correlation of $I_{SM:H}$ maps from pairings of (a) observations, (b) models, (c) FLUXCOM versus models, and (d) GEWEX versus models for four different seasons.
Figure S5. Global distribution of the Pearson correlation coefficient (R) between anomalies of latent heat flux and soil moisture from six observationally-based FLUXCOM RS+METEO products for four different seasons: March–May (MAM), June–August (JJA), September–November (SON), and December–February (DJF). <R> shows the average of R over grid cells which have a finite value of R in all four observational products. P shows the percentage of grid cells with positive significant R (p-value<0.01). The histogram on the lower left of each map shows the frequency distribution of R. Bar colors of histograms correspond to color-coding of the colorbar.
Figure S6. Spatial correlation of R(SM, LE) maps from pairings of FLUXCOM RS+METEO products for four different seasons.
Figure S7. Global distribution of the terrestrial coupling index between anomalies of sensible heat flux and soil moisture \((I_{SM:H})\) from two observationally-based (left) FLUXCOM and (right) GEWEX products for four different seasons: March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF). \(<I>\) shows the average of \(I_{SM:H}\) over grid cells which have a finite value of \(I_{SM:H}\) in all two observational products. \(P\) shows the percentage of grid cells with negative significant \(I\) (\(p\)-value<0.01). The histogram on the lower left of each map shows the frequency distribution of \(I_{SM:H}\).
Figure S8. As in Figure S3, but for the five forecast models.
Figure S5. Spatial correlation of I_{SMH} maps from pairings of (a) observations, (b) models, (c) FLUXCOM versus models, and (d) GEWEX versus models for four different seasons.