Supplemental Material for

Dynamical Attribution of Recent Variability in Atlantic Overturning

Helen R. Pillar
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Patrick Heimbach
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Helen L. Johnson
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

David P. Marshall
Department of Physics, University of Oxford, Oxford, United Kingdom

(Manuscript received 14 October 2015, in final form 1 February 2016)

* Current affiliation: Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Current affiliation: Institute for Computational Engineering and Sciences, and Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas.

Corresponding author address: Helen R. Pillar, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark.

E-mail: hpillar@nbi.ku.dk
Supplementary Fig 1: Extension of Fig. 2 in this paper to access the full Reanalysis II period (01/1979-06/2014 inclusive). This extension is enabled by continuously truncating the maximum assumed AMOC memory to produce transport estimates closer to 01/1979. Note that the transport estimate for 01/1979 can only be made accounting for an AMOC memory of 1 month (darkest blue). In Fig. 2 the reconstruction is started in 01/1994 (delineated by the black line). This is the earliest date for which forcing at a lead time of 15 years is available in the current Reanalysis II release, enabling transport estimates accounting for a AMOC memory of up to 15 years (darkest red). The role of surface buoyancy-forcing (c,d) in generating low frequency AMOC variability (e) is increasingly underestimated towards 01/1979. However, it is likely that the total wind forced transport (a,b) and high frequency variability of the total AMOC (e) is well captured in the 01/1979-12/1993 extension.