Supporting Information for

Variability of Sea Level and Upper-Ocean Heat Content in the Indian Ocean: Effects of Subtropical Indian Ocean Dipole and ENSO

Lei Zhang¹, Weiqing Han¹, Yuanlong Li¹, Nicole S. Lovenduski¹

1 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA

Contents of this file
Table S1
Figure S1-S3
Table S1 Positive (first row) and negative (second row) SIOD years (see Fig. 10). Bold fonts denote the co-occurrence of positive SIOD and La Niña in the first row, and the co-occurrence of negative SIOD with El Niño in the second row.

|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
Figure S1 (a) shows the “forcing ratio” in HYCOM_ITF. In the Indian Ocean, climatological forcing is used (ratio=0); in the Pacific and the Southern Ocean, daily forcing is used (ratio=1). (b) and (c) show the zonal and meridional resolutions of HYCOM experiments.
Figure S2 Climatological distribution of D20 (shading; m) and surface wind stress (N m⁻²) during January–March, the peak season of SIOD. The letter “A” denotes the center of Mascarene High. Cyan box (60°E-80°E, 15°S-5°S) denotes the region for the north pole of the SLA dipole associated with SIOD. Black box (50°E-80°E, 12.5°S-2.5°S) denotes the thermocline ridge region.
Figure S3 Regression of January-March (JFM) mean precipitation from ERA-20C on the normalized JFM SDMI, which is defined as differences of SSTA averaged over averaged over 55˚E-65˚E, 37˚S-27˚S and 105˚E-115˚E, 37˚S-27˚S. Shading denotes results that are statistically significant at the 90% confidence level.