Supplemental Material

© Copyright 2020 American Meteorological Society
Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Reproduction, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).
Journal of Climate

Supplementary information for

Dynamic origin of the interannual variability of West China autumn rainfall

Zhiwei Zhu¹, Rui Lu¹, Huiping Yan¹, Wenkai Li¹, Tim Li¹,², Jinhai He¹

1, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

2, International Pacific Research Center and Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, Hawaii

Corresponding author: Zhiwei Zhu, Nanjing University of Information Science and Technology, Ningliu Road 219, Meteorology Bldg. Jiangsu 210044, China. E-mail: zwz@nuist.edu.cn

This file includes:
Supplementary figures S1-S6
Figure S1. The correlation coefficient map between WCAR index and autumn mean (September and October) precipitation in each grid over China. The black dots mark those correlation coefficients passing the 95% significance level, and the red box denotes the WCAR domain.
Figure S2. The vertical integrated (from 1000hPa to 700hPa) vapor flux (vectors; 10^{-3} kg m$^{-1}$s$^{-1}$, only vectors passing the 95% significant level are shown) and its divergence (shading; 10^{-7} kg m$^{-2}$s$^{-1}$hPa$^{-1}$) regressed onto the interannual variability of WCAR. The black dots mark those regression coefficients passing the 95% significance level, and the red box denotes the WCAR domain.
Figure S3. (a) Vertical–longitude profile of geopotential height (shading; gpm), vertical motion (vectors; m s$^{-1}$, only vectors passing the 95% significant level are shown) and divergence (contours; 10$^{-7}$s$^{-1}$) regressed onto the interannual variability of WCAR averaged over 27°N–40°N. (b) Vertical–latitude profile of geopotential height (shading; gpm), vertical motion (vectors; m s$^{-1}$, only vectors passing the 95% significant level are shown) and divergence (contours; 10$^{-7}$s$^{-1}$) regressed onto the interannual variability of WCAR averaged over 110°E–135°E. The black dots mark those regression coefficients passing the 95% significance level. The yellow bar denotes the WCAR domain.
Figure S4. The areal mean regression coefficients of latent heat net flux (lhtfl; W m\(^{-2}\)), sensible heat net flux (shtfl; W m\(^{-2}\)), upward longwave radiation flux (ulwrf; W m\(^{-2}\)) and upward shortwave radiation flux at surface (uswrf; W m\(^{-2}\)) over SAT (32°N–42°N, 60°W–30°W) onto the interannual variability of WCAR.
Figure S5. Time series of normalized year-to-year CEP_SST index (areal mean SST over 5°S-5°N and 175°E-120°W, red line) and its trend (red dashed line), SAT_SST index (areal mean SST over 32°N-42°N and 60°W-30°W, blue line) and its trend (blue dashed line).
Figure S6. The vertically integrated (from 1000hPa to 300hPa) Q1 (shading; K day\(^{-1}\)) regressed onto the interannual variability of WCAR. The black dots mark those regression coefficients passing the 95% significance level, and the red box denotes the WCAR domain. The black solid lines represent the Tibetan Plateau.