Supplemental Material

Journal of Physical Oceanography
Dynamics of the Baroclinic Rossby Waves Regulating the Abyssal South China Sea
https://doi.org/10.1175/JPO-D-21-0207.1

© Copyright 2022 American Meteorological Society (AMS)
For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 USC §107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require AMS’s permission. Reproduction, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
Dynamics of the Baroclinic Rossby Waves Regulating the abyssal South China Sea

Qinbo Xu¹, Chun Zhou¹,²*, Wei Zhao¹,², Qianwen Hu¹, Xin Xiao¹, Dongqing Zhang¹, Fan Yang¹, Xiaodong Huang¹,², Jiwei Tian¹,²

1. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.

2. Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.

* Corresponding author: Chun Zhou, Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. (chunzhou@ouc.edu.cn)
FIG. S1 Mean potential density profile estimated over 15° to 18° N and 116° to 119° E based on hydrographic data. The stars denote the mean potential density observed by CTDs deployed in D2 and D5.
FIG. S2 Hourly time series of v (left) and u (right) time series observed at 2000m, 2500m, 3000m, 3500m and HAB-120m of the D1 (panel a-e indicating v and panel f-j indicating u).

The black lines indicate the daily mean time series.
FIG. S3 Hourly time series of v (left) and u (right) time series observed at 1000m, 2000m, 2500m, 3500m and HAB-120m of the D2 (panel a-e indicating v and panel f-j indicating u).

The black lines indicate the daily mean time series.
FIG. S4 Hourly time series of v (left) and u (right) time series observed at 2000m, 2500m, 3000m, 3500m and HAB-120m of the D3 (panel a-e indicating v and panel f-j indicating u). The black lines indicate the daily mean time series.
FIG. S5 Hourly time series of v (left) and u (right) time series observed at 2000m, 2500m, 3500m and HAB-120m of the D4 (panel a-d indicating v and panel e-h indicating u). The black lines indicate the daily mean time series.
FIG. S6 Hourly time series of v (left) and u (right) time series observed at 1000m, 2000m, 2500m, 3000m, 3500m and HAB-120m of the D5 (panel a-f indicating v and panel g-l indicating u). The black lines indicate the daily mean time series.
FIG. S7 Hourly time series of v (left) and u (right) time series observed at 2000m, 2500m and HAB-120m of the D6 (panel a-c indicating v and panel d-f indicating u). The black lines indicate the daily mean time series.
FIG. S8 Hourly time series of v (left) and u (right) time series observed at 2000m, 2500m, 3000m, 3500m and HAB-120m of the D7 (panel a-e indicating v and panel f-j indicating u).

The black lines indicate the daily mean time series.
FIG. S9 Band-passed v time series with window of 70-110 days at D1-D7 (panel a-f) with different color indicating the observation at different depths.
FIG. S10 Hovmöller diagram of v_2 (cm s$^{-1}$) derived from EXP3 along mooring section mentioned by Zhou et al. (2017).