Supplemental Material

Global within-season yield anomaly prediction for major crops derived using seasonal forecasts of large-scale climate indices and regional temperature and precipitation

Toshichika Iizumi 1, *, Yuhei Takaya 2, 3, Wonsik Kim 1, Toshiyuki Nakaegawa 2, and Shuhei Maeda 4

1 Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba 305-8604, Japan
2 Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
3 Global Environment and Marine Department, Japan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
4 Aerological Observatory, Japan Meteorological Agency, 1-2 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

Contents of this file:
Figures S1 to S10
Fig. S1. The ROC scores for the key season average temperature anomaly hindcast for the four crops.
Fig. S2. Same as Fig. S1 but for the key season average precipitation anomaly hindcast for the four crops.
Fig. S3. The ROC scores for country average maize yield loss computed for the hindcast mode of the four models. The number of skillful countries is presented for upper ROC score levels.
Fig. S4. Same as Fig. S3 but for rice.
Fig. S5. Same as Fig. S3 but for wheat.
Fig. S6. The ROC scores for maize yield loss at the grid-cell level computed for the hindcast mode of the four models.
Fig. S7. Same as Fig. S6 but for soybean.
Fig. S8. Same as Fig. S6 but for rice.
Fig. S9. Same as Fig. S6 but for wheat.
Fig. S10. The agreement between the reanalysis- and hindcast-based monthly climate indices for the 1979–2014 period. The values of each index were normalized to have zero mean and one standard deviation. See Table 1 for the abbreviations of these indices.