Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 4919–4939, https://doi.org/10.1175/MWR-D-16-0027.1.
Adrianto, I., T. M. Smith, K. A. Scharfenberg, and T. B. Trafalis, 2005: Evaluation of various algorithms and display concepts for weather forecasting. 21st Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., 5.7, https://ams.confex.com/ams/pdfpapers/83928.pdf.
Adrianto, I., T. B. Trafalis, and V. Lakshmanan, 2009: Support vector machines for spatiotemporal tornado prediction. Int. J. Gen. Syst., 38, 759–776, https://doi.org/10.1080/03081070601068629.
Ahijevych, D., J. O. Pinto, J. K. Williams, and M. Steiner, 2016: Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Wea. Forecasting, 31, 581–599, https://doi.org/10.1175/WAF-D-15-0113.1.
Alexiuk, M., N. Pizzi, and W. Pedrycz, 1999: Classification of volumetric storm cell patterns. 1999 IEEE Canadian Conf. on Electrical and Computer Engineering, Edmonton, AB, Canada, IEEE, 1081–1085, https://doi.org/10.1109/CCECE.1999.808201.
Allen, C. T., S. E. Haupt, and G. S. Young, 2007: Source characterization with a genetic algorithm–coupled dispersion–backward model incorporating SCIPUFF. J. Appl. Meteor. Climatol., 46, 273–287, https://doi.org/10.1175/JAM2459.1.
Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://ejssm.com/ojs/index.php/site/article/view/60.
Angevine, W. M., J. Olson, J. J. Gristey, I. Glenn, G. Feingold, and D. D. Turner, 2020: Scale awareness, resolved circulations, and practical limits in the MYNN-EDMF boundary layer and shallow cumulus scheme. Mon. Wea. Rev., 148, 4629–4639, https://doi.org/10.1175/MWR-D-20-0066.1.
Ashley, W. S., A. M. Haberlie, and V. A. Gensini, 2022: The future of supercells in the United States. Bull. Amer. Meteor. Soc., 104, E1–E21, https://doi.org/10.1175/BAMS-D-22-0027.1.
Bauer, P., P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess, and N. P. Wedi, 2021: The digital revolution of Earth-system science. Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0.
Bédard, J., S. Laroche, and P. Gauthier, 2015: A geo-statistical observation operator for the assimilation of near-surface wind data. Quart. J. Roy. Meteor. Soc., 141, 2857–2868, https://doi.org/10.1002/qj.2569.
Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine, 2019a: Enforcing analytic constraints in neural-networks emulating physical systems. arXiv, 1909.00912v5, https://doi.org/10.48550/arXiv.1909.00912.
Beucler, T., S. Rasp, M. Pritchard, and P. Gentine, 2019b: Achieving conservation of energy in neural network emulators for climate modeling. arXiv, 1906.06622v1, https://doi.org/10.48550/arXiv.1906.06622.
Billet, J., M. DeLisi, B. G. Smith, and C. Gates, 1997: Use of regression techniques to predict hail size and the probability of large hail. Wea. Forecasting, 12, 154–164, https://doi.org/10.1175/1520-0434(1997)012<0154:UORTTP>2.0.CO;2.
Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 1101–1119, https://doi.org/10.1175/WAF-D-16-0203.1.
Blouin, K. D., M. D. Flannigan, X. Wang, and B. Kochtubajda, 2016: Ensemble lightning prediction models for the province of Alberta, Canada. Int. J. Wildland Fire, 25, 421–432, https://doi.org/10.1071/WF15111.
Bodine, D. J., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139–158, https://doi.org/10.1175/WAF-D-11-00158.1.
Boukabara, S.-A., V. Krasnopolsky, J. Q. Stewart, S. G. Penny, R. N. Hoffman, and E. Maddy, 2019: Artificial intelligence may be key to better weather forecasts. Eos, 100, https://doi.org/10.1029/2019EO129967.
Brenowitz, N. D., and C. S. Bretherton, 2018: Prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett., 45, 6289–6298, https://doi.org/10.1029/2018GL078510.
Brenowitz, N. D., and C. S. Bretherton, 2019: Spatially extended tests of a neural network parametrization trained by coarse-graining. J. Adv. Model. Earth Syst., 11, 2728–2744, https://doi.org/10.1029/2019MS001711.
Brook, J. P., A. Protat, J. Soderholm, J. T. Carlin, H. McGowan, and R. A. Warren, 2021: HailTrack—Improving radar-based hailfall estimates by modeling hail trajectories. J. Appl. Meteor. Climatol., 60, 237–254, https://doi.org/10.1175/JAMC-D-20-0087.1.
Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for national weather service tornado warnings. Wea Forecasting, 33, 1501–1511, https://doi.org/10.1175/WAF-D-18-0120.1.
Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.
Burke, A., N. Snook, D. J. Gagne II, S. McCorkle, and A. McGovern, 2020: Calibration of machine learning-based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149–168, https://doi.org/10.1175/WAF-D-19-0105.1.
Cains, M. G., and Coauthors, 2022: NWS forecasters’ perceptions and potential uses of trustworthy AI/ML for hazardous weather risks. 21st Conf. on Artificial Intelligence for Environmental Science, Houston, TX, Amer. Meteor. Soc., 1.3, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393121.
Chase, R. J., D. R. Harrison, A. Burke, G. M. Lackmann, and A. McGovern, 2022: A machine learning tutorial for operational meteorology. Part I: Traditional machine learning. Wea. Forecasting, 37, 1509–1529, https://doi.org/10.1175/WAF-D-22-0070.1.
Chase, R. J., D. R. Harrison, G. Lackmann, and A. McGovern, 2023: A machine learning tutorial for operational meteorology. Part II: Neural networks and deep learning. Wea. Forecasting, https://doi.org/10.1175/WAF-D-22-0187.1, in press.
Chiu, H., E. Adeli, and J. C. Niebles, 2020: Segmenting the future. IEEE Robot. Autom. Lett., 5, 4202–4209, https://doi.org/10.1109/LRA.2020.2992184.
Chmieleweski, V. C., C. Potvin, P. S. Skinner, A. E. Reinhart, E. R. Mansell, and K. M. Calhoun, 2021: How well can we forecast cloud-to-ground lightning rates within the NSSL Experimental Warn-on-Forecast system using machine learning? 10th Conf. on the Meteorological Application of Lightning Data, Online, Amer. Meteor. Soc., 5.4, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/380582.
Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 1235–1248, https://doi.org/10.1175/WAF-D-11-00151.1.
Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014a: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639–653, https://doi.org/10.1175/WAF-D-13-00113.1.
Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014b: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639–653, https://doi.org/10.1175/WAF-D-13-00113.1.
Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331–345, https://doi.org/10.1175/WAF-D-17-0099.1.
Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, L. Cronce, and J. Brunner, 2020: NOAA ProbSevere v2.0—ProbHail, ProbWind, and ProbTor. Wea. Forecasting, 35, 1523–1543, https://doi.org/10.1175/WAF-D-19-0242.1.
Cintineo, J. L., M. J. Pavolonis, and J. M. Sieglaff, 2022: ProbSevere LightningCast: A deep-learning model for satellite-based lightning nowcasting. Wea. Forecasting, 37, 1239–1257, https://doi.org/10.1175/WAF-D-22-0019.1.
Clark, A. J., and E. D. Loken, 2022: Machine learning-derived severe weather probabilities from a Warn-on-Forecast system. Wea. Forecasting, 37, 1721–1740, https://doi.org/10.1175/WAF-D-22-0056.1
Clark, A. J., A. MacKenzie, A. McGovern, V. Lakshmanan, and R. Brown, 2015: An automated, multi-parameter dryline identification algorithm. Wea. Forecasting, 30, 1781–1794, https://doi.org/10.1175/WAF-D-15-0070.1
Clark, A. J., and Coauthors, 2021: A real-time, virtual spring forecasting experiment to advance severe weather prediction. Bull. Amer. Meteor. Soc., 102, E814–E816, https://doi.org/10.1175/BAMS-D-20-0268.1
Clark, A. J. , and Coauthors, 2022a: Spring Forecasting Experiment 2022 Conducted by the Experimental Forecast Program of the Hazardous Weather Testbed: Program overview and operations plan. NOAA, 43 pp., https://hwt.nssl.noaa.gov/sfe/2022/docs/HWT_SFE2022_operations_plan.pdf.
Clark, A. J., and Coauthors, 2022b: Spring forecasting experiment 2022 conducted by the experimental forecast program of the NOAA hazardous weather testbed: Preliminary findings and results. NOAA, 95 pp., https://hwt.nssl.noaa.gov/sfe/2022/docs/HWT_SFE_2022_Prelim_Findings_FINAL.pdf.
Clark, A. J., and Coauthors, 2022c: The third real-time, virtual spring forecasting experiment to advance severe weather prediction capabilities. Bull. Amer. Meteor. Soc., 104, E456–E458, https://doi.org/10.1175/BAMS-D-22-0213.1.
Clark, A. J., and Coauthors, 2022d: The second real-time, virtual spring forecasting experiment to advance severe weather prediction. Bull. Amer. Meteor. Soc., 103, E1114–E1116, https://doi.org/10.1175/BAMS-D-21-0239.1.
Coburn, J., and S. C. Pryor, 2022: Do machine learning approaches offer skill improvement for short-term forecasting of wind gust occurrence and magnitude? Wea. Forecasting, 37, 525–543, https://doi.org/10.1175/WAF-D-21-0118.1.
Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320–337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.
Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho”. Bull. Amer. Meteor. Soc., 97, 935–949, https://doi.org/10.1175/BAMS-D-14-00254.1.
Czernecki, B., M. Taszarek, M. Marosz, M. Półrolniczak, L. Kolendowicz, A. Wyszogrodzki, and J. Szturc, 2019: Application of machine learning to large hail prediction—The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmos. Res., 227, 249–262, https://doi.org/10.1016/j.atmosres.2019.05.010.
Demuth, J. L., and Coauthors, 2020: Recommendations for developing useful and usable convection-allowing model ensemble information for NWS forecasters. Wea. Forecasting, 35, 1381–1406, https://doi.org/10.1175/WAF-D-19-0108.1.
Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641–663, https://doi.org/10.1175/JAS-D-16-0066.1.
Dieleman, S., K. W. Willett, and J. Dambre, 2015: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. Roy. Astron. Soc., 450, 1441–1459, https://doi.org/10.1093/mnras/stv632.
Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 361–16 366, https://doi.org/10.1073/pnas.1307758110.
Doswell, C. A., III, A. R. Moller, and H. E. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544–557, https://doi.org/10.1175/1520-0434(1999)014<0544:SSAPAS>2.0.CO;2.
Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577–595, https://doi.org/10.1175/WAF866.1.
Ebert-Uphoff, I., R. Lagerquist, K. Hilburn, Y. Lee, K. Haynes, J. Stock, C. Kumler, and J. Q. Stewart, 2021: CIRA guide to custom loss functions for neural networks in environmental sciences—Version 1. arXiv, 2106.09757v1, https://doi.org/10.48550/arXiv.2106.09757.
Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 1825–1845, https://doi.org/10.1175/JAMC-D-17-0306.1.
Elmore, K. L., and H. Grams, 2016: Using mPING data to generate random forests for precipitation type forecasts. 14th Conf. on Artificial and Computational Intelligence and its Applications to the Environmental Sciences, New Orleans, LA, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/96Annual/webprogram/Paper289684.html.
Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 1335–1342, https://doi.org/10.1175/BAMS-D-13-00014.1.
Fata, A. L., F. Amato, M. Bernardi, M. D’Andrea, R. Procopio, and E. Fiori, 2022: Horizontal grid spacing comparison among random forest algorithms to nowcast cloud-to-ground lightning occurrence. Stochastic Environ. Res. Risk Assess., 36, 2195–2206, https://doi.org/10.1007/s00477-022-02222-1.
Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart, T. A. Jones, N. Yussouf, and K. H. Knopfmeier, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast system. Wea. Forecasting, 34, 1721–1739, https://doi.org/10.1175/WAF-D-19-0094.1.
Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast system. Mon. Wea. Rev., 149, 1535–1557, https://doi.org/10.1175/MWR-D-20-0194.1.
French, M. M., and D. M. Kingfield, 2021: Tornado formation and intensity prediction using polarimetric radar estimates of updraft area. Wea. Forecasting, 36, 2211–2231, https://doi.org/10.1175/WAF-D-21-0087.1.
Gagne, D. J., II, A. McGovern, and J. Brotzge, 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 1341–1353, https://doi.org/10.1175/2008JTECHA1205.1.
Gagne, D. J., II, A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 1024–1043, https://doi.org/10.1175/WAF-D-13-00108.1.
Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840, https://doi.org/10.1175/WAF-D-17-0010.1.
Gagne, D. J., II, S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1.
Geng, Y.-a., and Coauthors, 2019: LightNet: A dual spatiotemporal encoder network model for lightning prediction. KDD’19: Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Anchorage, AK, Association for Computing Machinery, 2439–2447, https://doi.org/10.1145/3292500.3330717.
Geng, Y.-a., and Coauthors, 2021: A deep learning framework for lightning forecasting with multi-source spatiotemporal data. Quart. J. Roy. Meteor. Soc., 147, 4048–4062, https://doi.org/10.1002/qj.4167.
Gensini, V. A., and T. L. Mote, 2015: Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307–321, https://doi.org/10.1007/s10584-014-1320-z.
Gensini, V. A., C. Ramseyer, and T. L. Mote, 2014: Future convective environments using NARCCAP. Int. J. Climatol., 34, 1699–1705, https://doi.org/10.1002/joc.3769.
Gensini, V. A., C. Converse, W. S. Ashley, and M. Taszarek, 2021: Machine learning classification of significant tornadoes and hail in the United States using ERA5 proximity soundings. Wea. Forecasting, 36, 2143–2160, https://doi.org/10.1175/WAF-D-21-0056.1.
Gibbs, J. G., 2016: A skill assessment of techniques for real-time diagnosis and short-term prediction of tornado intensity using the WSR-88D. J. Oper. Meteor., 4, 170–181, https://doi.org/10.15191/nwajom.2016.0413.
Gil, Y., and Coauthors, 2019: Intelligent systems for geosciences: An essential research agenda. Commun. ACM, 62, 76–84, https://doi.org/10.1145/3192335.
Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 1416–1430, https://doi.org/10.1175/2009WAF2222269.1.
Gomes, C., and Coauthors, 2019: Computational sustainability: Computing for a better world and a sustainable future. Commun. ACM, 62, 55–65, https://doi.org/10.1145/3339399.
Goodfellow, I., Y. Bengio, and A. Courville, 2016: Deep Learning. MIT Press, 800 pp.
Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106–123, https://doi.org/10.1175/WAF-D-11-00008.1.
Grönquist, P., C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li, and T. Hoefler, 2021: Deep learning for post-processing ensemble weather forecasts. Philos. Trans. Roy. Soc., A379, 20200092, https://doi.org/10.1098/rsta.2020.0092.
Han, D., J. Lee, J. Im, S. Sim, S. Lee, and H. Han, 2019: A novel framework of detecting convective initiation combining automated sampling, machine learning, and repeated model tuning from geostationary satellite data. Remote Sens., 11, 1454, https://doi.org/10.3390/rs11121454.
Han, L., J. Sun, W. Zhang, Y. Xiu, H. Feng, and Y. Lin, 2017: A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos., 122, 4038–4051, https://doi.org/10.1002/2016JD025783.
Harrison, D., 2022: Machine learning co-production in operational meteorology. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 196 pp., https://shareok.org/handle/11244/335971.
Haupt, S. E., A. Pasini, and C. Marzban, 2008: Artificial Intelligence Methods in the Environmental Sciences. 1st ed. Springer, 424 pp.
Haynes, K., R. Lagerquist, M. McGraw, K. Musgrave, and I. Ebert-Uphoff, 2023: Creating and evaluating uncertainty estimates with neural networks for environmental-science applications. Artif. Intell. Earth Syst., 2, e220061, https://doi.org/10.1175/AIES-D-22-0061.1.
Hempel, B., 2022: Nadocast—CONUS severe weather probabilities via feature engineering and gradient boosted decision trees. GitHub, https://github.com/brianhempel/nadocast.
Heng, B. C. P., and Coauthors, 2020: SINGV-DA: A data assimilation system for convective-scale numerical weather prediction over Singapore. Quart. J. Roy. Meteor. Soc., 146, 1923–1938, https://doi.org/10.1002/qj.3774.
Hill, A. J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting severe weather with random forests. Mon. Wea. Rev., 148, 2135–2161, https://doi.org/10.1175/MWR-D-19-0344.1.
Hoffman, R. R., 2017: A taxonomy of emergent trusting in the human-machine relationship. Cognitive Systems Engineering: The Future for a Changing World, P. J. Smith and R. R. Hoffman, Eds., CRC Press, 137–164.
Hoffman, R. R., S. V. Deal, S. Potter, and E. M. Roth, 2010: The practitioner’s cycles, Part 2: Solving envisioned world problems. IEEE Intell. Syst., 25, 6–11, https://doi.org/10.1109/MIS.2010.89.
Hoffman, R. R., D. S. LaDue, H. M. Mogil, P. J. Roebber, and J. G. Trafton, 2017: Minding the Weather: How Expert Forecasters Think. MIT Press, 488 pp.
Hoogewind, K. A., M. E. Baldwin, and R. J. Trapp, 2017: The impact of climate change on hazardous convective weather in the United States: Insight from high-resolution dynamical downscaling. J. Climate, 30, 10 081–10 100, https://doi.org/10.1175/JCLI-D-16-0885.1.
Insurance Information Institute, 2019: Facts + statistics: Tornadoes and thunderstorms. Insurance Information Institute, https://www.iii.org/fact-statistic/facts-statistics-tornadoes-and-thunderstorms.
Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297–327, https://doi.org/10.1175/WAF-D-15-0107.1.
Karpatne, A., I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, 2019: Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng., 31, 1544–1554, https://doi.org/10.1109/TKDE.2018.2861006.
Karras, T., T. Aila, S. Laine, and J. Lehtinen, 2018: Progressive growing of GANs for improved quality, stability, and variation. arXiv, 1710.10196v3, https://doi.org/10.48550/arXiv.1710.10196.
Karstens, C. D., and Coauthors, 2018: Development of a human-machine mix for forecasting severe convective events. Wea. Forecasting, 33, 715–737, https://doi.org/10.1175/WAF-D-17-0188.1.
Kennedy, P. C., S. A. Rutledge, B. Dolan, and E. Thaler, 2014: Observations of the 14 July 2011 Fort Collins hailstorm: Implications for WSR-88D-based hail detection and warnings. Wea. Forecasting, 29, 623–638, https://doi.org/10.1175/WAF-D-13-00075.1.
Kingfield, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Wea. Forecasting, 30, 1125–1139, https://doi.org/10.1175/WAF-D-14-00096.1.
Kitzmiller, D. H., W. E. McGovern, and R. F. Saffle, 1995: The WSR-88D severe weather potential algorithm. Wea. Forecasting, 10, 141–159, https://doi.org/10.1175/1520-0434(1995)010<0141:TWSWPA>2.0.CO;2.
Kochkov, D., J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer, 2021: Machine learning accelerated computational fluid dynamics. Proc. Natl. Acad. Sci., 118, e2101784118, https://doi.org/10.1073/pnas.2101784118.
Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet classification with deep convolutional neural networks. Commun. ACM, 62, 84–90, https://doi.org/10.1145/3065386.
Kurth, T., and Coauthors, 2018: Exascale deep learning for climate analytics. Proc. Int. Conf. for High Performance Computing, Networking, Storage, and Analysis, Dallas, TX, IEEE, 1–12, https://dl.acm.org/doi/10.5555/3291656.3291724.
Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 1173–1188, https://doi.org/10.1175/WAF-D-19-0024.1.
Labriola, J., N. Snook, Y. Jung, B. Putnam, and M. Xue, 2017: Ensemble hail prediction for the storms of 10 May 2010 in south-central Oklahoma using single- and double-moment microphysical schemes. Mon. Wea. Rev., 145, 4911–4936, https://doi.org/10.1175/MWR-D-17-0039.1.
Lagerquist, R., and I. Ebert-Uphoff, 2022: Can we integrate spatial verification methods into neural-network loss functions for atmospheric science? Artif. Intell. Earth Syst., 1, e220021, https://doi.org/10.1175/AIES-D-22-0021.1.
Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 2175–2193, https://doi.org/10.1175/WAF-D-17-0038.1.
Lagerquist, R., A. McGovern, and D. J. Gagne II, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 1137–1160, https://doi.org/10.1175/WAF-D-18-0183.1.
Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 2837–2861, https://doi.org/10.1175/MWR-D-19-0372.1.
Lagerquist, R., J. Q. Stewart, I. Ebert-Uphoff, and C. Kumler, 2021a: Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data. Mon. Wea. Rev., 149, 3897–3921, https://doi.org/10.1175/MWR-D-21-0096.1.
Lagerquist, R., D. Turner, I. Ebert-Uphoff, J. Stewart, and V. Hagerty, 2021b: Using deep learning to emulate and accelerate a radiative transfer model. J. Atmos. Oceanic Technol., 38, 1673–1696, https://doi.org/10.1175/JTECH-D-21-0007.1.
Lakshmanan, V., I. Adrianto, T. Smith, and G. Stumpf, 2005: A spatiotemporal approach to tornado prediction. Proc. 2005 IEEE Int. Joint Conf. on Neural Networks, Montreal, QC, Canada, IEEE, 1642–1647, https://doi.org/10.1109/IJCNN.2005.1556125.
Lakshmanan, V., K. L. Ortega, and T. M. Smith, 2007: Creating spatio-temporal tornado probability forecasts using fuzzy logic and motion variability. Fifth Conf. on Artificial Intelligence Applications to Environmental Science, San Antonio, TX, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_119456.htm.
LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, 1998: Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278–2324, https://doi.org/10.1109/5.726791.
LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436–444, https://doi.org/10.1038/nature14539.
Lee, S., H. Han, J. Im, E. Jang, and M.-I. Lee, 2017: Detection of deterministic and probabilistic convection initiation using Himawari-8 advanced Himawari Imager data. Atmos. Meas. Tech., 10, 1859–1874, https://doi.org/10.5194/amt-10-1859-2017.
Lee, Y., C. D. Kummerow, and I. Ebert-Uphoff, 2021: Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data. Atmos. Meas. Tech., 14, 2699–2716, https://doi.org/10.5194/amt-14-2699-2021.
Leinonen, J., U. Hamann, and U. Germann, 2022a: Seamless lightning nowcasting with recurrent-convolutional deep learning. arXiv, 2203.10114v3, https://doi.org/10.48550/arXiv.2203.10114.
Leinonen, J., U. Hamann, U. Germann, and J. R. Mecikalski, 2022b: Nowcasting thunderstorm hazards using machine learning: The impact of data sources on performance. Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022.
Lin, T., and Coauthors, 2019: Attention-based dual-source spatiotemporal neural network for lightning forecast. IEEE Access, 7, 158 296–158 307, https://doi.org/10.1109/ACCESS.2019.2950328.
Loeffler, S. D., and M. R. Kumjian, 2018: Quantifying the separation of enhanced Zdr and Kdp regions in nonsupercell tornadic storms. Wea. Forecasting, 33, 1143–1157, https://doi.org/10.1175/WAF-D-18-0011.1.
Loken, E. D., A. J. Clark, and C. D. Karstens, 2020: Generating probabilistic next-day severe weather forecasts from convection-allowing ensembles using random forests. Wea. Forecasting, 35, 1605–1631, https://doi.org/10.1175/WAF-D-19-0258.1.
Loken, E. D., A. J. Clark, and A. McGovern, 2022a: Comparing and interpreting differently designed random forests for next-day severe weather hazard prediction. Wea. Forecasting, 37, 871–899, https://doi.org/10.1175/WAF-D-21-0138.1.
Loken, E. D., K. A. Wilson, T. Sandmael, A. J. Clark, K. M. Calhoun, A. E. Reinhart, P. Skinner, and P. C. Burke, 2022b: Improving probabilistic watch-to-warning severe hazard guidance by merging the Warn-on-Forecast system with observations-based products using machine learning. 30th Conf. on Severe Local Storms, Santa Fe, NM, Amer. Meteor. Soc., 42, https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407634.
López, L., E. García-Ortega, and J. L. Sánchez, 2007: A short-term forecast model for hail. Atmos. Res., 83, 176–184, https://doi.org/10.1016/j.atmosres.2005.10.014.
Malde, K., N. O. Handegard, L. Eikvil, and A.-B. Salberg, 2020: Machine intelligence and the data-driven future of marine science. ICES J. Mar. Sci., 77, 1274–1285, https://doi.org/10.1093/icesjms/fsz057.
Malone, T. F., 1955: Application of statistical methods in weather prediction. Proc. Natl. Acad. Sci. USA, 41, 806–815, https://doi.org/10.1073/pnas.41.11.806.
Manzato, A., 2013: Hail in northeast Italy: A neural network ensemble forecast using sounding-derived indices. Wea. Forecasting, 28, 3–28, https://doi.org/10.1175/WAF-D-12-00034.1.
Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 520–12 526, https://doi.org/10.1029/2019GL084099.
Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2009: Preliminary investigation into the severe thunderstorm environment of Europe simulated by the Community Climate System Model 3. Atmos. Res., 93, 607–618, https://doi.org/10.1016/j.atmosres.2008.09.014.
Marzban, C., 2000: A neural network for tornado diagnosis: Managing local minima. Neural Comput. Appl., 9, 133–141, https://doi.org/10.1007/s005210070024.
Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617–626, https://www.jstor.org/stable/26187858.
Marzban, C., and G. J. Stumpf, 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151–163, https://doi.org/10.1175/1520-0434(1998)013%3C0151:ANNFDW%3E2.0.CO;2.
Marzban, C., and A. Witt, 2001: A Bayesian neural network for severe-hail size prediction. Wea. Forecasting, 16, 600–610, https://doi.org/10.1175/1520-0434(2001)016<0600:ABNNFS>2.0.CO;2.
McCloskey, S., E. D. Loken, C. Karstens, B. T. Smith, and D. E. Jahn, 2022: Examining when and how random forests add value to next-day Storm Prediction Center hail forecasts. 31st Conf. on Weather Analysis and Forecasting/27th Conf. on Numerical Weather Prediction, Houston, TX, Amer. Meteor. Soc., J8.3, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/397442.
McGovern, A., D. J. Gagne II, J. K. Williams, R. A. Brown, and J. B. Basara, 2014: Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Mach. Learn., 95, 27–50, https://doi.org/10.1007/s10994-013-5343-x.
McGovern, A., D. J. Gagne II, J. Basara, T. M. Hamill, and D. Margolin, 2015: Solar energy prediction: An international contest to initiate interdisciplinary research on compelling meteorological problems. Bull. Amer. Meteor. Soc., 96, 1388–1395, https://doi.org/10.1175/BAMS-D-14-00006.1.
McGovern, A., K. L. Elmore, D. J. Gagne II, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017a: Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 2073–2090, https://doi.org/10.1175/BAMS-D-16-0123.1.
McGovern, A., C. Potvin, and R. A. Brown, 2017b: Using large-scale machine learning to improve our understanding of the formation of tornadoes. Large-Scale Machine Learning in the Earth Sciences, A. Srivastava et al., Eds., Chapman and Hall, 95–112.
McGovern, A., R. Lagerquist, D. J. Gagne II, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 2175–2199, https://doi.org/10.1175/BAMS-D-18-0195.1.
McGovern, A., I. Ebert-Uphoff, D. J. Gagne II, and A. Bostrom, 2022: Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science. Environ. Data Sci., 1, e6, https://doi.org/10.1017/eds.2022.5.
McGuire, M. P., and T. W. Moore, 2022: Prediction of tornado days in the United States with deep convolutional neural networks. Comput. Geosci., 159, 104990, https://doi.org/10.1016/j.cageo.2021.104990.
Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 49–78, https://doi.org/10.1175/MWR3062.1.
Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. R. Walker, 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 1039–1059, https://doi.org/10.1175/JAMC-D-14-0129.1.
Mercer, A. E., C. M. Shafer, C. A. Doswell III, L. M. Leslie, and M. B. Richman, 2009: Objective classification of tornadic and nontornadic severe weather outbreaks. Mon. Wea. Rev., 137, 4355–4368, https://doi.org/10.1175/2009MWR2897.1.
Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343.
Meyer, T. C., K. M. Calhoun, D. M. Kingfield, and C. Karstens, 2017: Using random forest to generate cloud-to-ground lightning probabilities. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 5B.6, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320597.
Miller, D. E., Z. Wang, R. J. Trapp, and D. S. Harnos, 2020: Hybrid prediction of weekly tornado activity out to week 3: Utilizing weather regimes. Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253.
Miller, T., 2019: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell., 267, 1–38, https://doi.org/10.1016/j.artint.2018.07.007.
Mitchell, E. D. W., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The national severe storms laboratory tornado detection algorithm. Wea. Forecasting, 13, 352–366, https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.
Molina, M. J., D. J. Gagne, and A. F. Prein, 2021: A benchmark to test generalization capabilities of deep learning methods to classify severe convective storms in a changing climate. Earth Space Sci., 8, e2020EA001490, https://doi.org/10.1029/2020EA001490.
Molnar, C., 2018: Interpretable machine learning: A guide for making black box models explainable. Leanpub, accessed, https://christophm.github.io/interpretable-ml-book/.
Molnar, C., G. Casalicchio, and B. Bischl, 2020: Interpretable machine learning—A brief history, state-of-the-art and challenges. arXiv, 2010.09337v1, https://doi.org/10.48550/arXiv.2010.09337.
Monteleoni, C., G. A. Schmidt, and S. McQuade, 2013: Climate informatics: Accelerating discovering in climate science with machine learning. Comput. Sci. Eng., 15, 32–40, https://doi.org/10.1109/MCSE.2013.50.
Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.
Mostajabi, A., D. L. Finney, M. Rubinstein, and F. Rachidi, 2019: Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. npj Climate Atmos. Sci., 2, 41, https://doi.org/10.1038/s41612-019-0098-0.
Mounier, A., L. Raynaud, L. Rottner, M. Plu, P. Arbogast, M. Kreitz, L. Mignan, and B. Touzé, 2022: Detection of bow echoes in kilometer-scale forecasts using a convolutional neural network. Artif. Intell. Earth Syst., 1, e210010, https://doi.org/10.1175/AIES-D-21-0010.1.
Mueller, C., and J. Wilson, 1989: Evaluation of the TDWR aviation nowcasting experiment. Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc, 224–227.
Mueller, C., J. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132–146, https://doi.org/10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.
Mueller, S. T., R. R. Hoffman, W. Clancey, A. Emrey, and G. Klein, 2019: Explanation in human-AI systems: A literature meta-review synopsis of key ideas and publication and bibliography for explainable AI. arXiv, 1902.01876v1, https://doi.org/10.48550/arXiv.1902.01876.
Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947–970, https://doi.org/10.1175/JAMC-D-18-0247.1.
NOAA National Centers for Environmental Information, 2022: Billion-dollar weather and climate disasters: Table of events. NOAA NCEI, accessed 22 October 2022, https://www.ncdc.noaa.gov/billions/.
Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783–801, https://doi.org/10.1175/WAF-D-12-00125.1.
NSSL/NWS SPC, 2022: Experimental outlook verification. NOAA, accessed 22 October 2022, https://hwt.nssl.noaa.gov/sfe_viewer/2022/outlook_verification/.
Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 45–68, https://doi.org/10.1175/BAMS-D-15-00073.1.
Pal, S., E. Tirone, S. Dutta, W. A. Gallus, R. Maitra, J. Newman, and E. Weber, 2022: “Blowin’ in the wind”—Diagnosing the probability that a severe thunderstorm wind report is truly due to severe intensity wind event. 21st Conf. on Artificial Intelligence for Environmental Science, Houston, TX, Amer. Meteor. Soc., 5A.1, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/395627.
Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 2998–3024, https://doi.org/10.1175/MWR-D-14-00416.1.
Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian hierarchical modeling framework for correcting reporting bias in the U.S. tornado database. Wea. Forecasting, 34, 15–30, https://doi.org/10.1175/WAF-D-18-0137.1.
Potvin, C. K., C. Broyles, P. S. Skinner, and H. E. Brooks, 2022: Improving estimates of U.S. tornado frequency by accounting for unreported and underrated tornadoes. J. Appl. Meteor. Climatol., 61, 909–930, https://doi.org/10.1175/JAMC-D-21-0225.1.
Púčik, T., C. Castellano, P. Groenemeijer, T. Kühne, A. T. Rädler, B. Antonescu, and E. Faust, 2019: Large hail incidence and its economic and societal impacts across Europe. Mon. Wea. Rev., 147, 3901–3916, https://doi.org/10.1175/MWR-D-19-0204.1.
Pullman, M., I. Gurung, M. Maskey, R. Ramachandran, and S. A. Christopher, 2019: Applying deep learning to hail detection: A case study. IEEE Trans. Geosci. Remote Sens., 57, 10 218–10 225, https://doi.org/10.1109/TGRS.2019.2931944.
Pulukool, F., L. Li, and C. Liu, 2020: Using deep learning and machine learning methods to diagnose hailstorms in large-scale thermodynamic environments. Sustainability, 12, 10499, https://doi.org/10.3390/su122410499.
Putnam, B. J., Y. Jung, N. Yussouf, D. Stratman, T. A. Supinie, M. Xue, C. Kuster, and J. Labriola, 2021: The impact of assimilating ZDR observations on storm-scale ensemble forecasts of the 31 May 2013 Oklahoma storm event. Mon. Wea. Rev., 149, 1919–1942, https://doi.org/10.1175/MWR-D-20-0261.1.
Racah, E., C. Beckham, T. Maharaj, S. E. Kahou, Prabhat, and C. Pal, 2017: Extreme weather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, Association for Computing Machinery, 3405–3416, https://dl.acm.org/doi/10.5555/3294996.3295099.
Rakhlin, A., A. Shvets, V. Iglovikov, and A. Kalinin, 2018: Deep convolutional neural networks for breast cancer histology image analysis. arXiv, 1802.00752v2, https://doi.org/10.48550/arXiv.1802.00752.
Ras, G., M. van Gerven, and P. Haselager, 2018: Explanation methods in deep learning: Users, values, concerns and challenges. Explainable and Interpretable Models in Computer Vision and Machine Learning, Springer, 19–36.
Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1.
Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1.
Ringhausen, J., P. Bitzer, W. Koshak, and J. Mecikalski, 2021: Classification of GLM flashes using random forests. Earth Space Sci., 8, e2021EA001861, https://doi.org/10.1029/2021EA001861.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1.
Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562–584, https://doi.org/10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.
Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, N. Navab et al., Eds., Lecture Notes in Computer Science, Vol. 9351, Springer, 234–241.
Rudin, C., 2018: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. arXiv, 1811.10154v3, https://doi.org/10.48550/arXiv.1811.10154.
Salcedo-Sanz, S., and Coauthors, 2022: Analysis, characterization, prediction and attribution of extreme atmospheric events with machine learning: A review. arXiv, 2207.07580v1, https://doi.org/10.48550/arXiv.2207.07580.
Samek, W., G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Muller, Eds., 2019: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science, Vol. 11700, Springer, 439 pp.
Sandmæl, T. N., and Coauthors, 2023: The tornado probability algorithm: A probabilistic machine learning tornadic circulation detection algorithm. Wea. Forecasting, 38, 445–466, https://doi.org/10.1175/WAF-D-22-0123.1.
Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill, 2020: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 3489–3506, https://doi.org/10.1175/MWR-D-20-0096.1.
Schmidt, T., and Coauthors, 2023: 1-2 hour hail nowcasting using time-resolving 3-dimensional UNets. 22nd Conf. on Artificial Intelligence for Environmental Science, Denver, CO, Amer. Meteor. Soc., 5A.2, https://ams.confex.com/ams/103ANNUAL/meetingapp.cgi/Paper/418273.
Schulz, B., and S. Lerch, 2022: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Wea. Rev., 150, 235–257, https://doi.org/10.1175/MWR-D-21-0150.1.
Sessa, M. F., and R. J. Trapp, 2020: Observed relationship between tornado intensity and pretornadic mesocyclone characteristics. Wea. Forecasting, 35, 1243–1261, https://doi.org/10.1175/WAF-D-19-0099.1.
Shafer, C. M., A. E. Mercer, L. M. Leslie, M. B. Richman, and C. A. Doswell, 2010: Evaluation of WRF model simulations of tornadic and nontornadic outbreaks occurring in the spring and fall. Mon. Wea. Rev., 138, 4098–4119, https://doi.org/10.1175/2010MWR3269.1.
Shafer, C. M., A. E. Mercer, M. B. Richman, L. M. Leslie, and C. A. Doswell III, 2012: An assessment of areal coverage of severe weather parameters for severe weather outbreak diagnosis. Wea. Forecasting, 27, 809–831, https://doi.org/10.1175/WAF-D-11-00142.1.
Shen, B., X. Liang, Y. Ouyang, M. Liu, W. Zheng, and K. Carley, 2018: Stepdeep: A novel spatial-temporal mobility event prediction framework based on deep neural network. Proc. 24th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, London, United Kingdom, Association for Computing Machinery, 724–733, https://dl.acm.org/doi/10.1145/3219819.3219931.
Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proc. 28th Int. Conf. on Neural Information Processing Systems, Montreal, QC, Canada, Association for Computing Machinery, 802–810, https://dl.acm.org/doi/10.5555/2969239.2969329.
Shrestha, Y., Y. Zhang, R. Doviak, and P. W. Chan, 2021: Lightning flash rate nowcasting based on polarimetric radar data and machine learning. Int. J. Remote Sens., 42, 6762–6780, https://doi.org/10.1080/01431161.2021.1933243.
Sieglaff, J. M., L. M. Cronce, W. F. Feltz, K. M. Bedka, M. J. Pavolonis, and A. K. Heidinger, 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110–126, https://doi.org/10.1175/2010JAMC2496.1.
Silver, D., and Coauthors, 2017: Mastering the game of Go without human knowledge. Nature, 550, 354–359, https://doi.org/10.1038/nature24270.
Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1.
Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914–932, https://doi.org/10.1175/WAF-D-14-00122.1.
Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811–825, https://doi.org/10.1175/WAF-D-15-0152.1.
Snook, N., M. Xue, and Y. Jung, 2019: Tornado-resolving ensemble and probabilistic predictions of the 20 May 2013 Newcastle–Moore EF5 tornado. Mon. Wea. Rev., 147, 1215–1235, https://doi.org/10.1175/MWR-D-18-0236.1.
Sobash, R. A., G. S. Romine, and C. S. Schwartz, 2020: A comparison of neural-network and surrogate-severe probabilistic convective hazard guidance derived from a convection-allowing model. Wea. Forecasting, 35, 1981–2000, https://doi.org/10.1175/WAF-D-20-0036.1.
Spychalla, L. K., J. K. Robinson, R. Chase, A. McGovern, J. T. Allen, J. K. Williams, and N. Snook, 2022: Next-hour hail prediction from numerical weather prediction models using U-nets. 21st Conf. on Artificial Intelligence for Environmental Science, Houston, TX, Amer. Meteor. Soc., 15.1, https://ams.confex.com/ams/102ANNUAL/meetingapp.cgi/Paper/393566.
Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm labeling in three dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 1127–1145, https://doi.org/10.1175/MWR-D-16-0089.1.
Steinkruger, D., P. Markowski, and G. Young, 2020: An artificially intelligent system for the automated issuance of tornado warnings in simulated convective storms. Wea. Forecasting, 35, 1939–1965, https://doi.org/10.1175/WAF-D-19-0249.1.
Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast system. Bull. Amer. Meteor. Soc., 90, 1487–1500, https://doi.org/10.1175/2009BAMS2795.1.
Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/j.atmosres.2012.04.004.
Stuart, N. A., and Coauthors, 2022: The evolving role of humans in weather prediction and communication. Bull. Amer. Meteor. Soc., 103, E1720–E1746, https://doi.org/10.1175/BAMS-D-20-0326.1.
Su, A., H. Li, L. Cui, and Y. Chen, 2020: A convection nowcasting method based on machine learning. Adv. Meteor., 2020, 5124274, https://doi.org/10.1155/2020/5124274.
Sun, F., D. Qin, M. Min, B. Li, and F. Wang, 2019: Convective initiation nowcasting over China from Fengyun-4A measurements based on TV-L1 optical flow and BP_Adaboost neural network algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 4284–4296, https://doi.org/10.1109/JSTARS.2019.2952976.
Suwajanakorn, S., S. Seitz, and I. Kemelmacher-Shlizerman, 2017: Synthesizing Obama: Learning lip sync from audio. ACM Trans. Graph., 36 (4), 1–13, https://doi.org/10.1145/3072959.3073640.
Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.
Thompson, R. L., and Coauthors, 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 1509–1528, https://doi.org/10.1175/WAF-D-17-0004.1.
Trafalis, T. B., H. Ince, and M. B. Richman, 2003: Tornado detection with support vector machines. Computational Science—ICCS 2003, P. M. A. Sloot et al., Eds., Lecture Notes in Computer Science, Vol. 2660, Springer, 289–298.
Trafalis, T. B., I. Adrianto, M. B. Richman, and S. Lakshmivarahan, 2014: Machine-learning classifiers for imbalanced tornado data. Comput. Manage. Sci., 11, 403–418, https://doi.org/10.1007/s10287-013-0174-6.
Trapp, R. J., N. S. Diffenbaugh, and A. Gluhovsky, 2009: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett., 36, L01703, https://doi.org/10.1029/2008GL036203.
Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 5493–5509, https://doi.org/10.1175/JCLI-D-18-0740.1.
Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 2217–2231, https://doi.org/10.1175/JAMC-D-14-0094.1.
Veillette, M. S., H. Iskenderian, P. M. Lamey, and L. J. Bickmeier, 2013: Convective initiation forecasts through the use of machine learning methods. 11th Conf. on Artificial and Computational Intelligence and its Applications to the Environmental Sciences, Austin, TX, Amer. Meteor. Soc., TJ37.4, https://ams.confex.com/ams/93Annual/webprogram/Paper221560.html.
Vorndran, M., A. Schütz, J. Bendix, and B. Thies, 2022: Current training and validation weaknesses in classification-based radiation fog nowcast using machine learning algorithms. Artif. Intell. Earth Syst., 1, e210006, https://doi.org/10.1175/AIES-D-21-0006.1.
Walker, J. R., W. M. MacKenzie Jr., J. R. Mecikalski, and C. P. Jewett, 2012: An enhanced geostationary satellite–based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 1931–1949, https://doi.org/10.1175/JAMC-D-11-0246.1.
Wang, L., K. A. Scott, L. Xu, and D. Clausi, 2016: Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study. IEEE Trans. Geosci. Remote Sens., 54, 4524–4533, https://doi.org/10.1109/TGRS.2016.2543660.
Wang, P., W. Lv, C. Wang, and J. Hou, 2018: Hail storms recognition based on convolutional neural network. 2018 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, China, IEEE, 1703–1708, https://doi.org/10.1109/WCICA.2018.8630701.
Wang, Y., and T.-Y. Yu, 2015: Novel tornado detection using an adaptive neuro-fuzzy system with S-band polarimetric weather radar. J. Atmos. Oceanic Technol., 32, 195–208, https://doi.org/10.1175/JTECH-D-14-00096.1.
Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 1795–1817, https://doi.org/10.1175/WAF-D-15-0043.1.
Williams, J. K., 2014: Using random forests to diagnose aviation turbulence. Mach. Learn., 95, 51–70, https://doi.org/10.1007/s10994-013-5346-7.
Williams, J. K., D. Ahijevych, S. Dettling, and M. Steiner, 2008a: Combining observations and model data for short-term storm forecasting. Proc. SPIE, 7088, 708805, https://doi.org/10.1117/12.795737.
Williams, J. K., R. Sharman, J. Craig, and G. Blackburn, 2008b: Remote detection and diagnosis of thunderstorm turbulence. Proc. SPIE, 7088, 708804, https://doi.org/10.1117/12.795570.
Williams, J. K., D. A. Ahijevych, C. J. Kessinger, T. R. Saxen, M. Steiner, and S. Dettling, 2008c: A machine-learning approach to finding weather regimes and skillful predictor combinations for short-term storm forecasting. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J1. 4, https://ams.confex.com/ams/88Annual/techprogram/session_20816.htm.
Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113–131, https://doi.org/10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.
Wimmers, A., C. Velden, and J. H. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Wea. Rev., 147, 2261–2282, https://doi.org/10.1175/MWR-D-18-0391.1.
Witt, A., M. D. Eilts, G. J. Stumpf, J. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286–303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.
Yao, H., X. Li, H. Pang, L. Sheng, and W. Wang, 2020: Application of random forest algorithm in hail forecasting over Shandong Peninsula. Atmos. Res., 244, 105093, https://doi.org/10.1016/j.atmosres.2020.105093.
Zhao, M., T. Li, M. A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi, 2018: Through-wall human pose estimation using radio signals. 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, IEEE, 7356–7365, https://doi.org/10.1109/CVPR.2018.00768.
Zhou, K., Y. Zheng, W. Dong, and T. Wang, 2020: A deep learning network for cloud-to-ground lightning nowcasting with multi-source data. J. Atmos. Oceanic Technol., 37, 927–942, https://doi.org/10.1175/JTECH-D-19-0146.1.
Zhou, X., Y.-A. Geng, H. Yu, Q. Li, L. Xu, W. Yao, D. Zheng, and Y. Zhang, 2022: LightNet+: A dual-source lightning forecasting network with bi-direction spatiotemporal transformation. Appl. Intell., 52, 11 147–11 159, https://doi.org/10.1007/s10489-021-03089-5.
Zhou, Z., M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, 2020: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging, 39, 1856–1867, https://doi.org/10.1109/TMI.2019.2959609.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 5208 | 3723 | 212 |
PDF Downloads | 4951 | 3277 | 146 |