A Physics-Constrained Neural Differential Equation Framework for Data-Driven Snowpack Simulation

Andrew Charbonneau aCalifornia Institute of Technology

Search for other papers by Andrew Charbonneau in
Current site
Google Scholar
PubMed
Close
,
Katherine Deck aCalifornia Institute of Technology

Search for other papers by Katherine Deck in
Current site
Google Scholar
PubMed
Close
, and
Tapio Schneider aCalifornia Institute of Technology

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Open access

Abstract

This paper presents a physics-constrained neural differential equation framework for parameterization, and employs it to model the time evolution of seasonal snow depth given hydrometeorological forcings. When trained on data from multiple SNOTEL sites, the parameterization predicts daily snow depth with under 9% median error and Nash Sutcliffe Efficiencies over 0.94 across a wide variety of snow climates. The parameterization also generalizes to new sites not seen during training, which is not often true for calibrated snow models. Requiring the parameterization to predict snow water equivalent in addition to snow depth only increases error to ~12%. The structure of the approach guarantees the satisfaction of physical constraints, enables these constraints during model training, and allows modeling at different temporal resolutions without additional retraining of the parameterization. These benefits hold potential in climate modeling, and could extend to other dynamical systems with physical constraints.

© 2025 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Charbonneau, acharbon@caltech.edu

Abstract

This paper presents a physics-constrained neural differential equation framework for parameterization, and employs it to model the time evolution of seasonal snow depth given hydrometeorological forcings. When trained on data from multiple SNOTEL sites, the parameterization predicts daily snow depth with under 9% median error and Nash Sutcliffe Efficiencies over 0.94 across a wide variety of snow climates. The parameterization also generalizes to new sites not seen during training, which is not often true for calibrated snow models. Requiring the parameterization to predict snow water equivalent in addition to snow depth only increases error to ~12%. The structure of the approach guarantees the satisfaction of physical constraints, enables these constraints during model training, and allows modeling at different temporal resolutions without additional retraining of the parameterization. These benefits hold potential in climate modeling, and could extend to other dynamical systems with physical constraints.

© 2025 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew Charbonneau, acharbon@caltech.edu
Save